
 1

EECE.3220: Data Structures
Spring 2019

Programming Assignment #4: Game of War
Due Wednesday, 5/1/19, 11:59:59 PM

1. Introduction
This assignment provides an introduction to working with queue objects. You will modify
the array-based queue class we discussed in lecture to play the classic—and simple—
card game of War.

This assignment was adapted from an assignment written by Professor Phil Viall at
UMass Dartmouth for ECE 161: Foundations of Computer Engineering II.

2. Deliverables
You should submit five files for this assignment. Starter versions of each are available
both from the course schedule page and the Blackboard assignment for this program:

· prog4_main.cpp: Source file containing your main function.
o The starter file contains an outline of how the main function should behave.

Feel free to modify this outline to fit your solution, if necessary.
· Card.h / Card.cpp: Header/source files containing the Card class definition and

member function definitions.
o These files are exactly what I used in my solution. While you can modify

these files if you want to, you can use them without changing anything.

· Deck.h / Deck.cpp: Header/source files containing the Deck class definition and
member function definitions.

o The .h file contains a list of functions I believe you need for this program,
and a suggested list of data members.

o The .cpp file mostly contains empty functions that you must write. However,
I’ve written the fill() function, which creates a “shuffled” deck by
initializing every Card object randomly. Note that you’ll have to change this
function if you change the list of data members.
§ In particular, if you add a data member to track the number of cards,

make sure that value is set to 52 at the end of the fill() function.
o I strongly recommend using the array-based queue we covered in class as

a reference for the Deck class. Some Deck functions are exactly the same
as queue functions, while others can be similar functions modified to work
for this specific program. More details are provided in Section 4: Hints.

Submit a single archive file (.zip only) containing all .h and .cpp files to the “Program 4”
assignment on Blackboard.

EECE.3220: Data Structures M. Geiger
UMass Lowell Program 5

 2

3. Specifications
Rules: A full War ruleset can be found at https://www.pagat.com/war/war.html. Note that
this site resolves “wars” slightly differently than described below.
A. The full 52-card deck is used. Suits are ignored but must be tracked to differentiate

cards. Cards are ranked from high to low as follows: A K Q J T 9 8 7 6 5 4 3 2
B. The deck is shuffled and dealt so each player has a 26-card “deck.” The object of the

game is to win all the cards.
C. Each round of gameplay proceeds as follows:

i. Each player turns his or her top card face up.
ii. Whoever turned the card of higher rank wins both cards and places them at the

bottom of their deck.
iii. If the cards are of equal rank, a “war” starts.

a. In a war, each player deals three cards off the top of his or her deck, then turns
a fourth card face up.

b. The higher of these last two cards wins the war, thus allowing the winning
player to take all cards played in the war.

c. If the turned cards are equal, another round of war repeats—each player deals
three more cards, then turns a fourth card face up to resolve the war.

D. If, at any point, a player has no cards and is therefore unable to play a card when
required, then the other player wins the game. Note that it is possible for one player
to play his last card, win that round, and continue playing the game.

Input: Your main program only needs to take a single input value—a seed value to be
provided to the random number generator by calling the function srand() exactly once
near the beginning of main().

The fill() function in the Deck class, which I’ve written for you, is the only function that
uses random numbers, so don’t worry about the details of random number generation if
you’re unfamiliar with it.

Output: After prompting for and reading a seed value, your program should play out each
turn of the game, printing the outcome on one or more lines. Each line should contain:

· The number of cards in each player’s deck

· The card each player turns up at the start of the turn

· The outcome of the turn
If the turn involves a war, then the output should include the extra three cards dealt out
of each player’s hand. Treat the fourth card—the one that potentially resolves the war—
as a new turn.
See Section 5: Test Cases for examples of turn-by-turn outputs.

https://www.pagat.com/war/war.html

EECE.3220: Data Structures M. Geiger
UMass Lowell Program 5

 3

4. Hints
Some notes on the Deck class:

· Use an array-based queue—refer to Lecture 27 for more details. You don’t need
to dynamically allocate anything because you know the exact size of a full deck.

· Allow deck size to be flexible, with cards removed from a deck no longer stored in
that Deck object. My solution stores three Deck objects in main():

o The two player decks, which start empty and are then filled with 26 cards
apiece

o The cards placed on the table during each turn
§ I’ve declared this Deck and called it “table” in the main starter file

§ This Deck can represent the initial 52-card deck that is dealt into the
two player decks (so it’s empty once the players have their cards)

§ In each turn, this Deck starts empty, fills up as players remove cards
from their Deck, and then empties into the appropriate player’s Deck
once one player wins a turn or a war.

And a couple of notes on using Card functions:

· The compare() function returns an integer based on the relationship between the
calling object (the Card it’s called on) and the Card you pass as an argument:

o 0 if the cards are “equal” (same rank)
o 1 if the calling object is “higher” (if the calling object beats the other card)
o -1 if the calling object is “lower” (if the other card beats the calling object)

So, given 3 cards: c1 is the ace of hearts (Ah), c2 is the 9 of clubs (9c), and c3 is
the 9 of diamonds (9d):

o c1.compare(c2) returns 1 (Ah has a higher rank than 9c)

o c2.compare(c3) returns 0 (9c and 9d have the same rank)

o c3.compare(c1) returns -1 (9d has a lower rank than Ah)

· The printCard() function takes the output stream to which it prints as an
argument

o c1.printCard(cout) prints the contents of c1 to the screen

More hints may be added as necessary!

EECE.3220: Data Structures M. Geiger
UMass Lowell Program 5

 4

5. Test Cases
Your output should closely match these test cases in terms of format and general
functionality. Your program should behave the same each time you use the same seed,
but it may not match my output (which is missing almost 10 pages in areas shown in red.
Games take many rounds, but thankfully not many compute cycles, to end).
Enter seed: 1 Remember, seed is only user input!
[A:26, B:26] A: As, B: Qh --> A wins!
[A:27, B:25] A: Ks, B: Ah --> B wins!
[A:26, B:26] A: 6h, B: 4c --> A wins!
[A:27, B:25] A: Qs, B: 5s --> A wins!
[A:28, B:24] A: 3s, B: Tc --> B wins!
[A:27, B:25] A: 5c, B: 2c --> A wins!
[A:28, B:24] A: 6d, B: 5h --> A wins!
[A:29, B:23] A: 9s, B: Jd --> B wins!
[A:28, B:24] A: 2h, B: 3c --> B wins!
[A:27, B:25] A: Kh, B: Jh --> A wins!
[A:28, B:24] A: 8c, B: 9d --> B wins!
[A:27, B:25] A: 4h, B: Js --> B wins!
[A:26, B:26] A: 7c, B: 5d --> A wins!
[A:27, B:25] A: 8h, B: Kd --> B wins!
[A:26, B:26] A: 3h, B: Qd --> B wins!
[A:25, B:27] A: Td, B: 9c --> A wins!
[A:26, B:26] A: 8d, B: Ad --> B wins!
[A:25, B:27] A: 9h, B: 7s --> A wins!
[A:26, B:26] A: Jc, B: 4s --> A wins!
[A:27, B:25] A: 2s, B: Ac --> B wins!
[A:26, B:26] A: 7h, B: Th --> B wins!
[A:25, B:27] A: 6c, B: 2d --> A wins!
[A:26, B:26] A: 4d, B: 3d --> A wins!
[A:27, B:25] A: 6s, B: Kc --> B wins!
[A:26, B:26] A: 8s, B: Qc --> B wins!
[A:25, B:27] A: 7d, B: Ts --> B wins!
[A:24, B:28] A: As, B: Ks --> A wins!
[A:25, B:27] A: Qh, B: Ah --> B wins!
[A:24, B:28] A: 6h, B: 3s --> A wins!
[A:25, B:27] A: 4c, B: Tc --> B wins!
[A:24, B:28] A: Qs, B: 9s --> A wins!
[A:25, B:27] A: 5s, B: Jd --> B wins!
[A:24, B:28] A: 5c, B: 2h --> A wins!
[A:25, B:27] A: 2c, B: 3c --> B wins!
[A:24, B:28] A: 6d, B: 8c --> B wins!
[A:23, B:29] A: 5h, B: 9d --> B wins!
[A:22, B:30] A: Kh, B: 4h --> A wins!
[A:23, B:29] A: Jh, B: Js --> WAR!! <A:7c, B:8h; A:5d, B:Kd; A:Td, B:3h>
[A:19, B:25] A: 9c, B: Qd --> B wins!
 : “Missing” outcomes
[A:31, B:21] A: 8c, B: Jd --> B wins!
[A:30, B:22] A: 7d, B: 7s --> WAR!! <A:3h, B:9c; A:Qh, B:4s; A:5d, B:Qd>
[A:26, B:18] A: 8h, B: 8s --> WAR!! <A:3s, B:Ad; A:Qs, B:6c; A:7h, B:Th>
[A:22, B:14] A: Ac, B: 8d --> A wins!
 : More “missing” outcomes
[A:50, B:2] A: Kc, B: 3d --> A wins!
[A:51, B:1] A: Qd, B: Jd --> A wins!
PLAYER A WINS!!!

	1. Introduction
	2. Deliverables
	3. Specifications
	4. Hints
	5. Test Cases

