
 1

EECE.3220: Data Structures
Spring 2019

Programming Assignment #3: Stacks and strings
Due Monday, 4/8/19, 11:59:59 PM

1. Introduction
This assignment provides an introduction to working with stack objects. You will write a
linked stack class, as well as a basic main program to interact with the stack.

2. Deliverables
You should submit three files for this assignment:

· prog3_main.cpp: Source file containing your main function.
· Stack.h: Header file containing the Stack class definition.

· Stack.cpp: Source file containing definitions of Stack member functions.
Submit a single archive file (.zip only) containing all .h and .cpp files to the “Program 3”
assignment on Blackboard. If you complete either of the extra credit sections, you may
have more than 3 files to submit. Please note in the “Comments” section of your
Blackboard submission that you have submitted extra credit if applicable.

3. Specifications
Class Design: Your Stack class should be implemented as a linked stack holding values
of type string. The class should contain, at a minimum, the following functions:

· Stack(): Default constructor

· ~Stack(): Destructor

· bool empty(): Returns true if stack is empty, false otherwise

· string top(): Return the top value on the stack

· void push(const string &val): Push val on top of the stack

· void pop(): Remove the top element from the stack

· void display(ostream &out): Function that prints the contents of the calling
object to the output stream out, starting at the top of the stack and printing one
element per line.

EECE.3220: Data Structures M. Geiger
UMass Lowell Program 3

 2

3. Specifications (continued)
Command Line Input and Corresponding Output: Your main program should accept
the commands below:

· push: Prompt the user to enter a word that should then be pushed on the top of
the stack. Immediately print the state of the stack after the push operation is
complete.

· pop: Remove the topmost word from the stack. Immediately print the state of the
stack after the pop operation is complete.

· match: Prompt the user to enter a word and test if that word matches the topmost
item on the stack. Print an appropriate message in either case; the message
should contain both the user input and the word at the top of the stack.

· exit: End the program.

Error checking: Your program should print error messages in the following cases:

· The user enters a command other than the four valid ones listed
· The user attempts to pop a value from an empty stack

EXTRA CREDIT: You may earn up to 7 points of extra credit for each of the following
upgrades (and may implement both for up to 15 points (yes, I know 7 + 7 = 14)). Please
specify which upgrade(s) you completed (if any) in the “Comments” for your submission:

· Write an overloaded output operator << for your Stack class and demonstrate its
use in your main function.

o This operator prints an object directly—given Stack S1, cout << S1;
would behave like S1.display(cout) if the << operator is correct.

· Write your own code to make all string input case-insensitive. In particular:
o All commands should be case-insensitive (in other words, push, PUSH, and

pUsH should all perform the same operation)

o All words entered should be stored with lowercase letters only (Geiger
would be pushed on the stack as geiger)

o The match command should indicate two words match even if the cases of
all letters do not match

Note: Any comparisons formed in your solution should not simply pass the
strings into a built-in function, such as (but not limited to) stricmp(),
strcasecmp(), or boost::iequals(). You may use built-in functions to build
a case-insensitive comparison function, but you won’t get extra credit for simply
calling one function that does the work for you.

I strongly suggest you get the base program working first, then copy your working files
and attempt the extra credit in a new set of files. It’s very easy to “break” a working
program and find yourself unable to reverse the changes and fix the program again!

EECE.3220: Data Structures M. Geiger
UMass Lowell Program 3

 3

4. Hints
We discussed the following basics of a linked stack implementation in class Wednesday,
3/27. I strongly suggest you watch the lecture video if you could not attend class, as I did
not present any slides that day:

· A linked Stack implementation strictly requires just one data member—a pointer
to the top node in the stack that should be NULL when the stack is empty.

· In addition to defining a Stack class, you will have to define a node data type. I
recommend creating the Node type within your Stack definition, ensuring this
Node type can only be used inside Stack functions:
class Stack {
public:
 // List of public member functions
private:
 class Node {
 public:
 string word; // Word in each node
 Node *next; // Pointer to next node
 };

 Node *top; // Pointer to top of stack
};

Each Node contains a pointer to the next Node in the stack. The last Node (the
“bottom” of the stack) should have its next pointer set to NULL.

· We also discussed basic algorithms for some of the member functions:
o ~Stack(): In a linked data structure, the destructor deletes all of the

dynamically allocated nodes. The general algorithm, in pseudocode:
Start at top
while (more nodes exist) {
 Find next node
 Delete current node
}

o push(): The push() function adds a new node at the top of the stack:
Dynamically allocate new node & store data in it
Make new node point to old top node
Make top pointer reference new node

o pop(): The pop() function removes the top node from the stack:
Store address of current top node
Make top pointer reference 2nd node (since 1st node

will be deleted)
Delete old top node (using ptr from first step)

EECE.3220: Data Structures M. Geiger
UMass Lowell Program 3

 4

5. Test Cases
Your output should closely match these test cases exactly for the given input values, at
least in terms of format and general functionality. I will use these test cases in grading of
your assignments, but will also generate additional cases that will not be publicly
available. Note that these test cases may not cover all possible program outcomes. You
should create your own tests to help debug your code and ensure proper operation for all
possible inputs.
In the test cases below, user input is underlined. The program may behave differently if
you add the case-insensitive upgrade.

Enter command: pop
ERROR: Stack is empty

Enter command: push
Enter word: program
Stack: program

Enter command: push
Enter word: four
Stack: four
 program

Enter command: push
Enter word: EECE
Stack: EECE
 four
 program

Enter command: match
Enter word: EECE
User input EECE matches top of stack

Enter command: match
Enter word: four
User input four doesn’t match top of stack (EECE)

Enter command: pop
Stack: four
 program

Enter command: pop
Stack: program

Enter command: pop
Stack is empty

Enter command: quit
ERROR: Invalid command quit

Enter command: exit

	1. Introduction
	1. Introduction
	2. Deliverables
	2. Deliverables
	3. Specifications
	3. Specifications
	4. Hints
	4. Hints
	4. Hints
	5. Test Cases
	5. Test Cases
	5. Test Cases

