EECE.3220: Data Structures

Homework 1 Solution

1. (25 points) Assume each expression listed below represents the execution time of a program.
Express the order of magnitude for each time using big O notation.

Solutions: In each case, the fastest growing term (which determines order of magnitude) is in
bold.

a. T(n) =n3+100n-log,n + 5000 = 0(n?)
b. T(n) =2"+n% = 0(2")
n%-1
c. T(n)= — t8log,n= Oo(n)
Note: > — 1 =(n+ 1) * (n— 1), so that first term is simply (n — 1).
d Tn)=1+4+2+4+--+2"1=0(02"

Note: The answer here is O(2") and not O(2™") because 2™ =2"/2=0.5 * 2",

EECE.3220: Data Structures Instructor: M. Geiger
Homework 1 Solution

2. (75 points) For each of the code segments below, determine an equation for the worst-case
computing time T(n) (expressed as a function of n, i.e. 2n + 4) and the order of magnitude
(expressed using big O notation, i.e. O(n)).

Solutions: In each case, the number of times each line is executed is written to the right in red.
Also, for simplicity’s sake, a for loop is treated as a single statement, despite the fact that a for
loop is really a collection of three statements. If you analyzed each for loop as a set of three
statements, we’ll account for that when grading your submissions.

a. // Calculate mean

n = 0; 1
sum = 0; 1
cin >> Xx; 1
while (x != -999) n+ 1
{

n++; n

sum += x; n

cin >> Xx; n
}
mean = sum / n; 1

Tn) =1+1+1+(m+l)+n+n+n+1=4n+5=0(n)

Note: While the value of x controls the number of loop iterations, n counts the number of
iterations, as it’s incremented in every loop iteration. You can therefore express the execution
time as a function of n.

b. // Matrix addition
for (int 1 = 0; 1 < n; 1i++) {
for (int j = 0; j < n; j++) |
cli][j] = al[i][j] + b[i][j]/

S 8B
+ +
e

]_ n times

}

Tm)=m+1)+n*(n+1)+n)=2n*+2n+1=0(n?

EECE.3220: Data Structures Instructor: M. Geiger
Homework 1 Solution

c. // Matrix multiplication
for (int i = 0; 1 < n; i++) A
for (int 7 = 0; 7 < n; G++) |
cli][j] = 0;
for (int k = 0; kK < n; k++) {
cli][j] += al[i][k] * b[k][j];
}

o I T o B = B«

Tn) =m+D)+n*[(n+1)+n+n*((n+1)+n)]
=m+D+n*[(n+1)+n+2n*+n]
=(m+1)+2n’*+3n>+n=2n+3n2+2n+1=0(®%

d // Bubble sort

for (int 1 = 0; 1 < n - 1; 1i++) { n
for (int j = 0; j < n - 1; j++) { n?
if (x[j] > x[7 + 1]) { n2-n
temp = x[7]; (n-1) + (n-2) + (n-3)
x[7] = x[7 + 1]; (n-1) + (n-2) + (n-3)
x[j + 1] = temp; (n-1) + (n-2) + (n-3)
}
}
}

T(n) =n+n’+(n’-n)+n*@n-1)/2=2.50"-0.5n = O(n?)

Note: The worst case for a bubble sort is that the array is initially sorted from largest to smallest
value. So, the body of the if statement executes (n-1) times the first time through the inner loop,
(n-2) times the second time, and so on, executing just 1 time in the last inner loop iteration. As
shown in our discussion of selection sort, that sum is equal to n*(n-1)/2.

e. while (n >= 1) logon + 2
n /= 2; logzen + 1

T(n) = (logon + 2) + (logon + 1) = 2 logan + 3 = O(logz2n)

Note: The analysis here is similar to the analysis of binary search, in which the loop test executes
(logon + 2) times. A few examples will show this analysis to be true—for example, say n = 8 =
23. It takes 4 (which is logan + 1) iterations for n /=2 to produce the value 0, and the loop
condition must therefore be tested a 5™ time for the loop to end.

EECE.3220: Data Structures Instructor: M. Geiger
Homework 1 Solution

f- (extra credit—35 points)
x = 1;
for (int 1 =1; 1 <= n - 1; i++) {

S krND R

for (int j = 1; j <= x; j++) + 3+ 5 4+ ..+ (272+41)
cout << j << endl; + 2+ 4+ ..+ 272
x *= 2; -1

Tn) =1+n+Q2""+n-2)+2""-1)+m-1)
=2%2"! +3n -3 =2"+3n-3=0(2"

Note: To derive the formula for T(n) shown above, I went through the following analysis:

The number of inner loop iterations is based on the value of x—the for loop condition is always
tested (x + 1) times, and the body of the loop executes x times. x doubles every time you go
through the outer loop, and the body of that loop executes n-1 times. So, the last time you
execute the inner loop, x = 2™, then x is doubled one last time to 2™,

After about 10 minutes of Google searching (I wish that was a joke), [was able to find the
following formula that helped me determine a simple value for the sum 1 +2 +4 + ... + 2"

N-1
1—7rN

17

T'k

k=0

Therefore, the body of the inner loop executes 2" - 1 times, as shown by evaluating that formula
forr=2 and N = (n-1):

The inner loop condition is tested 1 more time than the loop body executes. The number of terms
inthe sum 1 +2+4+ ... + 2% is n-1. So, the third line executes 2! — 1 + (n-1) =21 +n -2
times.

