
EECE.3220: Data Structures
Homework 1 Solution

1. (25 points) Assume each expression listed below represents the execution time of a program.

Express the order of magnitude for each time using big O notation.

Solutions: In each case, the fastest growing term (which determines order of magnitude) is in
bold.

a. 𝑇𝑇(𝑛𝑛) = 𝒏𝒏𝟑𝟑 + 100𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑛𝑛 + 5000 = 𝑶𝑶(𝒏𝒏𝟑𝟑)

b. 𝑇𝑇(𝑛𝑛) = 𝟐𝟐𝒏𝒏 + 𝑛𝑛99 = 𝑶𝑶(𝟐𝟐𝒏𝒏)

c. 𝑇𝑇(𝑛𝑛) = 𝒏𝒏𝟐𝟐−𝟏𝟏

𝒏𝒏+𝟏𝟏
+ 8 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑛𝑛 = 𝑶𝑶(𝒏𝒏)

Note: n2 – 1 = (n + 1) * (n – 1), so that first term is simply (n – 1).

d. 𝑇𝑇(𝑛𝑛) = 1 + 2 + 4 + ⋯+ 𝟐𝟐𝒏𝒏−𝟏𝟏 = 𝑶𝑶(𝟐𝟐𝒏𝒏)

Note: The answer here is O(2n) and not O(2n-1) because 2n-1 = 2n / 2 = 0.5 * 2n.

EECE.3220: Data Structures Instructor: M. Geiger
Homework 1 Solution

 2

2. (75 points) For each of the code segments below, determine an equation for the worst-case
computing time T(n) (expressed as a function of n, i.e. 2n + 4) and the order of magnitude
(expressed using big O notation, i.e. O(n)).

Solutions: In each case, the number of times each line is executed is written to the right in red.
Also, for simplicity’s sake, a for loop is treated as a single statement, despite the fact that a for
loop is really a collection of three statements. If you analyzed each for loop as a set of three
statements, we’ll account for that when grading your submissions.

a. // Calculate mean

n = 0; 1
sum = 0; 1
cin >> x; 1
while (x != -999) n + 1
{
 n++; n
 sum += x; n
 cin >> x; n
}
mean = sum / n; 1

 T(n) = 1 + 1 + 1 + (n+1) + n + n + n + 1 = 4n + 5 = O(n)

Note: While the value of x controls the number of loop iterations, n counts the number of
iterations, as it’s incremented in every loop iteration. You can therefore express the execution
time as a function of n.

b. // Matrix addition

for (int i = 0; i < n; i++) { n + 1
 for (int j = 0; j < n; j++) { n + 1
 c[i][j] = a[i][j] + b[i][j]; n
 }
}

 T(n) = (n + 1) + n * ((n + 1) + n) = 2n2 + 2n + 1 = O(n2)

n times

EECE.3220: Data Structures Instructor: M. Geiger
Homework 1 Solution

 3

c. // Matrix multiplication
for (int i = 0; i < n; i++) { n + 1
 for (int j = 0; j < n; j++) { n + 1
 c[i][j] = 0; n
 for (int k = 0; k < n; k++) { n + 1
 c[i][j] += a[i][k] * b[k][j]; n
 }
 }
}

 T(n) = (n + 1) + n * [(n + 1) + n + n * ((n + 1) + n)]
 = (n + 1) + n * [(n + 1) + n + 2n2 + n]
 = (n + 1) + 2n3 + 3n2 + n = 2n3 + 3n2 + 2n + 1 = O(n3)

d. // Bubble sort

for (int i = 0; i < n - 1; i++) { n
 for (int j = 0; j < n – 1; j++) { n2
 if (x[j] > x[j + 1]) { n2-n
 temp = x[j]; (n-1) + (n-2) + (n-3) …

 x[j] = x[j + 1]; (n-1) + (n-2) + (n-3) …
 x[j + 1] = temp; (n-1) + (n-2) + (n-3) …
 }
 }
}

 T(n) = n + n2 + (n2 – n) + n*(n-1) / 2 = 2.5n2 – 0.5n = O(n2)

Note: The worst case for a bubble sort is that the array is initially sorted from largest to smallest
value. So, the body of the if statement executes (n-1) times the first time through the inner loop,
(n-2) times the second time, and so on, executing just 1 time in the last inner loop iteration. As
shown in our discussion of selection sort, that sum is equal to n*(n-1)/2.

e. while (n >= 1) log2n + 2

n /= 2; log2n + 1

 T(n) = (log2n + 2) + (log2n + 1) = 2 log2n + 3 = O(log2n)

Note: The analysis here is similar to the analysis of binary search, in which the loop test executes
(log2n + 2) times. A few examples will show this analysis to be true—for example, say n = 8 =
23. It takes 4 (which is log2n + 1) iterations for n /= 2 to produce the value 0, and the loop
condition must therefore be tested a 5th time for the loop to end.

n
n

EECE.3220: Data Structures Instructor: M. Geiger
Homework 1 Solution

 4

f. (extra credit—5 points)
x = 1; 1
for (int i = 1; i <= n - 1; i++) { n
 for (int j = 1; j <= x; j++) 2 + 3 + 5 + … + (2n-2+1)
 cout << j << endl; 1 + 2 + 4 + … + 2n-2
 x *= 2; n-1
}

 T(n) = 1 + n + (2n-1 + n – 2) + (2n-1 – 1) + (n – 1)
 = 2*2n-1 + 3n -3 = 2n + 3n – 3 = O(2n)

Note: To derive the formula for T(n) shown above, I went through the following analysis:

The number of inner loop iterations is based on the value of x—the for loop condition is always
tested (x + 1) times, and the body of the loop executes x times. x doubles every time you go
through the outer loop, and the body of that loop executes n-1 times. So, the last time you
execute the inner loop, x = 2n-2, then x is doubled one last time to 2n-1.

After about 10 minutes of Google searching (I wish that was a joke), I was able to find the
following formula that helped me determine a simple value for the sum 1 + 2 + 4 + … + 2n-2:

�𝑟𝑟𝑘𝑘 =
𝑁𝑁−1

𝑘𝑘=0

1 − 𝑟𝑟𝑁𝑁

1 − 𝑟𝑟

Therefore, the body of the inner loop executes 2n - 1 times, as shown by evaluating that formula
for r = 2 and N = (n-1):

� 2𝑘𝑘 =
𝑛𝑛−2

𝑘𝑘=0

1 − 2𝑛𝑛−1

1 − 2
= 2𝑛𝑛−1 − 1

The inner loop condition is tested 1 more time than the loop body executes. The number of terms
in the sum 1 + 2 + 4 + … + 2n-2 is n-1. So, the third line executes 2n-1 – 1 + (n-1) = 2n-1 + n – 2
times.

