EECE.3220: Data Structures Homework 1 Solution

1. (25 points) Assume each expression listed below represents the execution time of a program. Express the order of magnitude for each time using big O notation.

Solutions: In each case, the fastest growing term (which determines order of magnitude) is in **bold**.

- *a.* $T(n) = n^3 + 100n \cdot \log_2 n + 5000 = O(n^3)$
- b. $T(n) = 2^n + n^{99} = O(2^n)$

c.
$$T(n) = \frac{n^2 - 1}{n + 1} + 8 \log_2 n = O(n)$$

Note: $n^2 - 1 = (n + 1) * (n - 1)$, so that first term is simply (n - 1).

d. $T(n) = 1 + 2 + 4 + \dots + 2^{n-1} = \mathbf{0}(2^n)$

Note: The answer here is $O(2^n)$ and not $O(2^{n-1})$ because $2^{n-1} = 2^n / 2 = 0.5 * 2^n$.

2. (75 points) For each of the code segments below, determine an equation for the worst-case computing time T(n) (expressed as a function of n, i.e. 2n + 4) and the order of magnitude (expressed using big O notation, i.e. O(n)).

Solutions: In each case, the number of times each line is executed is written to the right in red. Also, for simplicity's sake, a for loop is treated as a single statement, despite the fact that a for loop is really a collection of three statements. *If you analyzed each for loop as a set of three statements, we'll account for that when grading your submissions.*

а.	// Calculate mean	
	n = 0;	1
	sum = 0;	1
	cin >> x;	1
	while (x != -999)	n + 1
	{	
	n++;	n
	sum += x;	n
	cin >> x;	n
	}	
	mean = sum / n;	1

$$T(n) = 1 + 1 + 1 + (n+1) + n + n + n + 1 = 4n + 5 = O(n)$$

<u>Note:</u> While the value of x controls the number of loop iterations, n counts the number of iterations, as it's incremented in every loop iteration. You can therefore express the execution time as a function of n.

```
b. // Matrix addition
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        n + 1
        c[i][j] = a[i][j] + b[i][j];
    n
    }
}</pre>
```

 $T(n) = (n + 1) + n * ((n + 1) + n) = 2n^2 + 2n + 1 = O(n^2)$

Note: The worst case for a bubble sort is that the array is initially sorted from largest to smallest value. So, the body of the if statement executes (n-1) times the first time through the inner loop, (n-2) times the second time, and so on, executing just 1 time in the last inner loop iteration. As shown in our discussion of selection sort, that sum is equal to $n^*(n-1)/2$.

e. while $(n \ge 1)$ $\log_2 n + 2$ $n \ne 2$; $\log_2 n + 1$ $T(n) = (\log_2 n + 2) + (\log_2 n + 1) = 2 \log_2 n + 3 = O(\log_2 n)$

<u>Note:</u> The analysis here is similar to the analysis of binary search, in which the loop test executes $(\log_2 n + 2)$ times. A few examples will show this analysis to be true—for example, say $n = 8 = 2^3$. It takes 4 (which is $\log_2 n + 1$) iterations for $n \neq 2$ to produce the value 0, and the loop condition must therefore be tested a 5th time for the loop to end.

f. (extra credit—5 points) x = 1;for (int i = 1; i <= n - 1; i++) { for (int j = 1; j <= x; j++) cout << j << endl; x = 2; $T(n) = 1 + n + (2^{n-1} + n - 2) + (2^{n-1} - 1) + (n - 1)$ $= 2*2^{n-1} + 3n - 3 = 2^n + 3n - 3 = O(2^n)$

Note: To derive the formula for T(n) shown above, I went through the following analysis:

The number of inner loop iterations is based on the value of x—the for loop condition is always tested (x + 1) times, and the body of the loop executes x times. x doubles every time you go through the outer loop, and the body of that loop executes n-1 times. So, the last time you execute the inner loop, $x = 2^{n-2}$, then x is doubled one last time to 2^{n-1} .

After about 10 minutes of Google searching (I wish that was a joke), I was able to find the following formula that helped me determine a simple value for the sum $1 + 2 + 4 + ... + 2^{n-2}$:

$$\sum_{k=0}^{N-1} r^k = \frac{1-r^N}{1-r}$$

Therefore, the body of the inner loop executes $2^n - 1$ times, as shown by evaluating that formula for r = 2 and N = (n-1):

$$\sum_{k=0}^{n-2} 2^k = \frac{1-2^{n-1}}{1-2} = 2^{n-1} - 1$$

The inner loop condition is tested 1 more time than the loop body executes. The number of terms in the sum $1 + 2 + 4 + ... + 2^{n-2}$ is n-1. So, the third line executes $2^{n-1} - 1 + (n-1) = 2^{n-1} + n - 2$ times.