EECE.3220: Data Structures

Homework 1 Solution

1. (25 points) Assume each expression listed below represents the execution time of a program. Express the order of magnitude for each time using big O notation.

Solutions: In each case, the fastest growing term (which determines order of magnitude) is in bold.
a. $\quad T(n)=\boldsymbol{n}^{3}+100 n \cdot \log _{2} n+5000=\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$
b. $\quad T(n)=\mathbf{2}^{n}+n^{99}=\boldsymbol{O}\left(\mathbf{2}^{n}\right)$
c. $\quad T(n)=\frac{\boldsymbol{n}^{2}-\mathbf{1}}{\boldsymbol{n + 1}}+8 \log _{2} n=\boldsymbol{O}(\boldsymbol{n})$

Note: $\mathrm{n}^{2}-1=(\mathrm{n}+1) *(\mathrm{n}-1)$, so that first term is simply $(\mathrm{n}-1)$.
d. $T(n)=1+2+4+\cdots+\mathbf{2}^{\boldsymbol{n - 1}}=\boldsymbol{O}\left(\mathbf{2}^{\boldsymbol{n}}\right)$

Note: The answer here is $\mathrm{O}\left(2^{\mathrm{n}}\right)$ and not $\mathrm{O}\left(2^{\mathrm{n}-1}\right)$ because $2^{\mathrm{n}-1}=2^{\mathrm{n}} / 2=0.5 * 2^{\mathrm{n}}$.
2. (75 points) For each of the code segments below, determine an equation for the worst-case computing time $T(n)$ (expressed as a function of n, i.e. $2 n+4$) and the order of magnitude (expressed using big O notation, i.e. $O(n)$).

Solutions: In each case, the number of times each line is executed is written to the right in red. Also, for simplicity's sake, a for loop is treated as a single statement, despite the fact that a for loop is really a collection of three statements. If you analyzed each for loop as a set of three statements, we'll account for that when grading your submissions.

```
a. // Calculate mean
n = 0; 1
sum = 0; 1
cin >> x; 1
while (x != -999) n + 1
{
    n++; n
    sum += x; n
    cin >> x; n
}
mean = sum / n; 1
```

 \(\mathrm{T}(\mathrm{n})=1+1+1+(\mathrm{n}+1)+\mathrm{n}+\mathrm{n}+\mathrm{n}+1=\mathbf{4 n}+\mathbf{5}=\mathbf{O}(\mathrm{n})\)
 Note: While the value of x controls the number of loop iterations, n counts the number of iterations, as it's incremented in every loop iteration. You can therefore express the execution time as a function of n.
b. // Matrix addition

$$
\mathrm{T}(\mathrm{n})=(\mathrm{n}+1)+\mathrm{n} *((\mathrm{n}+1)+\mathrm{n})=\mathbf{2} \mathbf{n}^{2}+\mathbf{2} \mathbf{n}+\mathbf{1}=\mathbf{O}\left(\mathbf{n}^{2}\right)
$$

```
c. // Matrix multiplication
    for (int \(i=0 ; i<n ; i++\) i \(n+1\)
        for (int \(j=0 ; j<n ; j++\) ) \(\quad\) n +1
        c[i][j] = 0;
        for (int \(k=0 ; k<n ; k++\) ) \{
                \(c[i][j]+=a[i][k] * b[k][j] ;\)
        \}
    \}
    \}
\[
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =(\mathrm{n}+1)+\mathrm{n} *[(\mathrm{n}+1)+\mathrm{n}+\mathrm{n} *((\mathrm{n}+1)+\mathrm{n})] \\
& =(\mathrm{n}+1)+\mathrm{n} *\left[(\mathrm{n}+1)+\mathrm{n}+2 \mathrm{n}^{2}+\mathrm{n}\right] \\
& =(\mathrm{n}+1)+2 \mathrm{n}^{3}+3 \mathrm{n}^{2}+\mathrm{n}=\mathbf{2} \mathbf{n}^{\mathbf{3}}+\mathbf{3 n ^ { 2 }}+\mathbf{2 n}+\mathbf{1}=\mathbf{O}\left(\mathbf{n}^{3}\right)
\end{aligned}
\]
d. // Bubble sort
    for (int \(i=0 ; i<n-1 ; i++\) i \(n\)
    for (int \(j=0 ; j<n-1 ; j++\) ) \(\left\{n^{2}\right.\)
        if \((x[j]>x[j+1])\) \{ \(n^{2}-n\)
            temp \(=x[j] ; \quad(n-1)+(n-2)+(n-3) \ldots\)
            \(x[j]=x[j+1] ; \quad(n-1)+(n-2)+(n-3) \ldots\)
            \(x[j+1]=\) temp; \((n-1)+(n-2)+(n-3) \ldots\)
        \}
    \}
    \}
    \(\mathrm{T}(\mathrm{n}) \quad=\mathrm{n}+\mathrm{n}^{2}+\left(\mathrm{n}^{2}-\mathrm{n}\right)+\mathrm{n}^{*}(\mathrm{n}-1) / 2=\mathbf{2 . 5} \mathbf{n}^{\mathbf{2}}-\mathbf{0 . 5 n}=\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)\)
```

Note: The worst case for a bubble sort is that the array is initially sorted from largest to smallest value. So, the body of the if statement executes ($\mathrm{n}-1$) times the first time through the inner loop, (n-2) times the second time, and so on, executing just 1 time in the last inner loop iteration. As shown in our discussion of selection sort, that sum is equal to $\mathrm{n}^{*}(\mathrm{n}-1) / 2$.

```
e. while (n >= 1) }\quad\mp@subsup{\operatorname{log}}{2}{}n+
    n /= 2; }\quad\mp@subsup{\operatorname{log}}{2}{}n+
    T(n)=(\mp@subsup{\operatorname{log}}{2}{}n+2)+(\mp@subsup{\operatorname{log}}{2}{}n+1)=\mathbf{2}\mp@subsup{\boldsymbol{log}}{2}{}\mathbf{n}+\mathbf{3}=\mathbf{O}(\mp@subsup{\boldsymbol{log}}{2}{}\mathbf{n})
```

Note: The analysis here is similar to the analysis of binary search, in which the loop test executes $\left(\log _{2} n+2\right)$ times. A few examples will show this analysis to be true-for example, say $n=8=$ 2^{3}. It takes 4 (which is $\log _{2} n+1$) iterations for $n /=2$ to produce the value 0 , and the loop condition must therefore be tested a $5^{\text {th }}$ time for the loop to end.

```
f. (extra credit-5 points)
x = 1; 1
for (int i = 1; i <= n - 1; i++) { n
    x *= 2;
}
\[
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =1+\mathrm{n}+\left(2^{\mathrm{n}-1}+\mathrm{n}-2\right)+\left(2^{\mathrm{n}-1}-1\right)+(\mathrm{n}-1) \\
& =2^{*} 2^{\mathrm{n}-1}+3 \mathrm{n}-3=\mathbf{2}^{\mathbf{n}}+\mathbf{3 n}-\mathbf{3}=\mathbf{O}\left(\mathbf{2}^{\mathrm{n}}\right)
\end{aligned}
\]
```

 for (int \(j=1 ; j<=x ; j++\)) \(\quad 2+3+5+\ldots+\left(2^{n-2}+1\right)\)
 cout \(\ll j \ll\) endl; \(1+2+4+\ldots+2^{\mathrm{n}-2}\)
 Note: To derive the formula for $\mathrm{T}(\mathrm{n})$ shown above, I went through the following analysis:
The number of inner loop iterations is based on the value of x-the for loop condition is always tested $(x+1)$ times, and the body of the loop executes x times. x doubles every time you go through the outer loop, and the body of that loop executes n-1 times. So, the last time you execute the inner loop, $x=2^{\mathrm{n}-2}$, then x is doubled one last time to $2^{\mathrm{n}-1}$.

After about 10 minutes of Google searching (I wish that was a joke), I was able to find the following formula that helped me determine a simple value for the sum $1+2+4+\ldots+2^{\mathrm{n}-2}$:

$$
\sum_{k=0}^{N-1} r^{k}=\frac{1-r^{N}}{1-r}
$$

Therefore, the body of the inner loop executes $2^{n}-1$ times, as shown by evaluating that formula for $\mathrm{r}=2$ and $\mathrm{N}=(\mathrm{n}-1)$:

$$
\sum_{k=0}^{n-2} 2^{k}=\frac{1-2^{n-1}}{1-2}=2^{n-1}-1
$$

The inner loop condition is tested 1 more time than the loop body executes. The number of terms in the sum $1+2+4+\ldots+2^{n-2}$ is $n-1$. So, the third line executes $2^{n-1}-1+(n-1)=2^{n-1}+n-2$ times.

