
EECE.3220: Data Structures 
Homework 1 Solution 

 
1. (25 points) Assume each expression listed below represents the execution time of a program. 

Express the order of magnitude for each time using big O notation. 
 
Solutions: In each case, the fastest growing term (which determines order of magnitude) is in 
bold. 

 
a. 𝑇𝑇(𝑛𝑛) = 𝒏𝒏𝟑𝟑 + 100𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑛𝑛 + 5000 = 𝑶𝑶(𝒏𝒏𝟑𝟑) 

 
b. 𝑇𝑇(𝑛𝑛) = 𝟐𝟐𝒏𝒏 + 𝑛𝑛99 = 𝑶𝑶(𝟐𝟐𝒏𝒏) 
 
c. 𝑇𝑇(𝑛𝑛) = 𝒏𝒏𝟐𝟐−𝟏𝟏

𝒏𝒏+𝟏𝟏
+ 8 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑛𝑛 = 𝑶𝑶(𝒏𝒏) 

 
Note: n2 – 1 = (n + 1) * (n – 1), so that first term is simply (n – 1). 
 
d. 𝑇𝑇(𝑛𝑛) = 1 + 2 + 4 + ⋯+ 𝟐𝟐𝒏𝒏−𝟏𝟏 = 𝑶𝑶(𝟐𝟐𝒏𝒏) 
 
Note: The answer here is O(2n) and not O(2n-1) because 2n-1 = 2n / 2 = 0.5 * 2n. 
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2. (75 points) For each of the code segments below, determine an equation for the worst-case 
computing time T(n) (expressed as a function of n, i.e. 2n + 4) and the order of magnitude 
(expressed using big O notation, i.e. O(n)). 

 
Solutions: In each case, the number of times each line is executed is written to the right in red. 
Also, for simplicity’s sake, a for loop is treated as a single statement, despite the fact that a for 
loop is really a collection of three statements. If you analyzed each for loop as a set of three 
statements, we’ll account for that when grading your submissions. 
 
a. // Calculate mean 

n = 0;    1 
sum = 0;   1 
cin >> x;   1 
while (x != -999)  n + 1 
{ 
 n++;    n 
 sum += x;   n 
 cin >> x;   n 
} 
mean = sum / n;  1 

 
 T(n)  = 1 + 1 + 1 + (n+1) + n + n + n + 1 = 4n + 5 = O(n) 
 
Note: While the value of x controls the number of loop iterations, n counts the number of 
iterations, as it’s incremented in every loop iteration. You can therefore express the execution 
time as a function of n. 
 
 
b. // Matrix addition 

for (int i = 0; i < n; i++) {  n + 1 
 for (int j = 0; j < n; j++) {  n + 1 
  c[i][j] = a[i][j] + b[i][j]; n 
 } 
} 
 

 T(n) = (n + 1) + n * ((n + 1) + n) = 2n2 + 2n + 1 = O(n2) 
 
 

  

n times 
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c. // Matrix multiplication 
for (int i = 0; i < n; i++) {   n + 1 
 for (int j = 0; j < n; j++) {   n + 1 
  c[i][j] = 0;      n 
  for (int k = 0; k < n; k++) {  n + 1 
   c[i][j] += a[i][k] * b[k][j];  n 
  } 
 } 
} 
 
 T(n) = (n + 1) + n * [ (n + 1) + n + n * ((n + 1) + n) ] 
   = (n + 1) + n * [ (n + 1) + n + 2n2 + n ] 
   = (n + 1) + 2n3 + 3n2 + n = 2n3 + 3n2 + 2n + 1 = O(n3) 
 

 
d. // Bubble sort 

for (int i = 0; i < n - 1; i++) { n  
 for (int j = 0; j < n – 1; j++) { n2 
  if (x[j] > x[j + 1]) {   n2-n 
   temp = x[j];    (n-1) + (n-2) + (n-3) … 

   x[j] = x[j + 1];   (n-1) + (n-2) + (n-3) … 
   x[j + 1] = temp;   (n-1) + (n-2) + (n-3) … 
  } 
 } 
} 

 
 T(n) = n + n2 + (n2 – n) + n*(n-1) / 2 = 2.5n2 – 0.5n = O(n2) 

 
Note: The worst case for a bubble sort is that the array is initially sorted from largest to smallest 
value. So, the body of the if statement executes (n-1) times the first time through the inner loop, 
(n-2) times the second time, and so on, executing just 1 time in the last inner loop iteration. As 
shown in our discussion of selection sort, that sum is equal to n*(n-1)/2.  
 

 
e. while (n >= 1) log2n + 2 

n /= 2;  log2n + 1 
 
 T(n) = (log2n + 2) + (log2n + 1) = 2 log2n + 3 = O(log2n) 
 
Note: The analysis here is similar to the analysis of binary search, in which the loop test executes 
(log2n + 2) times. A few examples will show this analysis to be true—for example, say n = 8 = 
23. It takes 4 (which is log2n + 1) iterations for n /= 2 to produce the value 0, and the loop 
condition must therefore be tested a 5th time for the loop to end. 
 
 
  

n 
n 
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f. (extra credit—5 points) 
x = 1;       1 
for (int i = 1; i <= n - 1; i++) { n 
 for (int j = 1; j <= x; j++)  2 + 3 + 5 + … + (2n-2+1) 
  cout << j << endl;   1 + 2 + 4 + … + 2n-2   
 x *= 2;      n-1 
} 

 
 T(n)  = 1 + n + (2n-1 + n – 2) + (2n-1 – 1) + (n – 1) 
   = 2*2n-1 + 3n -3 = 2n + 3n – 3 = O(2n) 
 
Note: To derive the formula for T(n) shown above, I went through the following analysis:  
 
The number of inner loop iterations is based on the value of x—the for loop condition is always 
tested (x + 1) times, and the body of the loop executes x times. x doubles every time you go 
through the outer loop, and the body of that loop executes n-1 times. So, the last time you 
execute the inner loop, x = 2n-2, then x is doubled one last time to 2n-1. 
 
After about 10 minutes of Google searching (I wish that was a joke), I was able to find the 
following formula that helped me determine a simple value for the sum 1 + 2 + 4 + … + 2n-2: 

 

�𝑟𝑟𝑘𝑘 =
𝑁𝑁−1

𝑘𝑘=0

1 − 𝑟𝑟𝑁𝑁

1 − 𝑟𝑟
 

 
Therefore, the body of the inner loop executes 2n - 1 times, as shown by evaluating that formula 
for r = 2 and N = (n-1): 
 

� 2𝑘𝑘 =
𝑛𝑛−2

𝑘𝑘=0

1 − 2𝑛𝑛−1

1 − 2
= 2𝑛𝑛−1 − 1 

 
The inner loop condition is tested 1 more time than the loop body executes. The number of terms 
in the sum 1 + 2 + 4 + … + 2n-2 is n-1. So, the third line executes 2n-1 – 1 + (n-1) = 2n-1 + n – 2 
times. 


