16.317: Microprocessor Systems Design I
 Spring 2015

Exam 1 Solution

1. (20 points, 5 points per part) Multiple choice

For each of the multiple choice questions below, clearly indicate your response by circling or underlining the single choice you think best answers the question.
a. Given $\mathrm{AL}=3 \mathrm{Ch}$ and $\mathrm{CF}=1$, what is the final result of the instruction RCR AL, 3?
i. $\quad A L=27 h, C F=1$
ii. $A L=87 h, C F=1$
iii. $A L=E 4 h, C F=1$
iv. $A L=E 1 h, C F=1$
v. $A L=07 h, C F=1$
b. Assuming A, B, C, and D are all signed integers, what compound condition does the following instruction sequence test?

```
MOV AX, A
ADD AX, B
CMP C, AX
SETLE BL
MOV AX, D
CMP AX, A
SETG BH
OR BL, BH
```

i. $\quad(C<=B) \quad|\mid(D>A)$
ii. $\quad(C<=A) \quad|\mid(D>A)$
iii. $\quad(C<=A+B) \quad|\mid(D>A)$
iv. $\quad(C<A+B)|\mid(D>A)$
v. $\quad(C<=A+B)|\mid(D+B>A)$

1 (continued)
c. If $A X=0 F F O h$, which of the following instructions will set $C F=1$?
A. BT AX, 3
B. BTR AX, 4
C. BTS AX, 15
D. BTC AX, 12
i. Only A
ii. Only B
iii. A and D
iv. B and C
v. All of the above (A, B, C, D)
d. If $A X=0808 \mathrm{H}$, which of the following choices correctly shows the results of performing the two bit scan instructions (BSF and BSR) on this register?
i. $\mathrm{BSF} \mathrm{DX}, \mathrm{AX} \quad \rightarrow \mathrm{ZF}=1, \mathrm{DX}=0008 \mathrm{~h}$ BSR DX, $\mathrm{AX} \quad \rightarrow \mathrm{ZF}=1, \mathrm{DX}=0008 \mathrm{~h}$
ii. $\mathrm{BSF} \mathrm{DX}, \mathrm{AX} \quad \rightarrow \mathrm{ZF}=1, \mathrm{DX}=0003 \mathrm{~h}$ BSR DX, AX $\quad \rightarrow Z F=1, D X=0004 h$
iii. BSF DX, AX $\quad \rightarrow \mathrm{ZF}=0, \mathrm{DX}=0003 \mathrm{~h}$ $\mathrm{BSR} \mathrm{DX}, \mathrm{AX} \quad \rightarrow \mathrm{ZF}=0, \mathrm{DX}=000 \mathrm{Bh}$
iv. $\quad \begin{aligned} B S F D X, A X & \rightarrow Z F=1, D X=0003 h \\ B S R D X, A X & \rightarrow Z F=1, D X=000 B h\end{aligned}$
v. BSF DX, AX $\rightarrow Z F=0$, $D X$ unchanged BSR DX, AX $\quad \rightarrow \mathrm{ZF}=0$, DX unchanged

2. (30 points) Data transfers and memory addressing

For each data transfer instruction in the sequence shown below, list all changed registers and/or memory locations and their final values. If memory is changed, be sure to explicitly list all changed bytes. Also, indicate if each instruction performs an aligned memory access, an unaligned memory access, or no memory access at all.
Initial state:
EAX: 00000000h
EBX: FFFFFFFAh
ECX: 00000003h
EDX: 0000FE98h
ESI: 00010480h
EDI: 00010470h

Address	Lo		Hi	
10470h	02	18	20	15
10474h	10	55	AA	12
10478h	47	FE	DC	11
1047Ch	93	59	31	70
10480h	56	DD	BA	EE
10484h	0F	23	41	19
10488h	49	64	7A	0F

Instructions:
MOV EAX, [ESI+EBX]

XCHG AX, [EDI+ECX*2]

MOVSX EDX, WORD PTR [ESI+ECX]

LEA SI, [DI+BX+0003h]

MOVZX AX, BYTE PTR [ESI+0002h]

Aligned? Yes No Not a memory access

3. (25 points) Arithmetic instructions

For each instruction in the sequence shown below, list all changed registers and/or memory locations and their new values. If memory is changed, be sure to explicitly list all changed bytes. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:
EAX: 00000010h
EBX: 00005195h
ECX: 00001006h
EDX: 0000A197h
CF: 1
ESI: 00021800h

Address	Lo		Hi	
21820h	99	07	08	F0
21824h	83	00	01	61
21828h	05	C1	71	31
2182Ch	20	40	33	80
21830h	05	00	AB	OF
21834h	41	82	11	55

Instructions:
ADD DX, BX

DEC AL

DIV CL

SUB AX, [ESI+0034h]

NEG CX

4. (25 points) Logical instructions

For each instruction in the sequence shown below, list all changed registers and/or memory locations and their new values. If memory is changed, be sure to explicitly list all changed bytes. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:
EAX: 0000009Bh
EBX: 0000445Ch
ECX: 00000005h
EDX: 0000F63Ch
CF: 0

Instructions:
OR AX, BX

SHL AX, 5

NOT BL

SAR AX, 3

ROL DX, 5
5. (10 points) Extra credit

Complete the code snippet below by writing the appropriate x86 instruction into each of the blank spaces. The purpose of each instruction is described in a comment to the right of the blank.

