
 1

16.317: Microprocessor-Based Systems I
Spring 2012

Exam 2

April 4, 2012

Name: ________________________________ ID #: _________________ Section: _________

For this exam, you may use a calculator and one 8.5” x 11” double-sided page of notes. All other
electronic devices (e.g., cellular phones, laptops, PDAs) are prohibited. If you have a cellular
phone, please turn it off prior to the start of the exam to avoid distracting other students.

The exam contains 3 questions for a total of 100 points. Please answer the questions in the spaces
provided. If you need additional space, use the back of the page on which the question is written
and clearly indicate that you have done so.

The last four pages of the exam (beginning with page 7) contain reference material for the exam:
lists of 80386 instructions and condition codes. You may detach these pages and do not have to
submit them when you turn in your exam.

You will have 50 minutes to complete this exam.

Q1: Multiple choice / 20
Q2: Protected mode

memory accesses / 40

Q3: Assembly language / 40
TOTAL SCORE / 100

 2

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Given CS = 1000H, IP = E000, and EBX = 1E001000, which of the following CALL

instructions will transfer control to an instruction at physical address 1F000H?

A. CALL 1000H
B. CALL F000H
C. CALL BX
D. CALL EBX
E. CALL HOME_BECAUSE_YOUR_MOTHER_MISSES_YOU

(hey, for all you know, that could be a valid instruction label)

i. A and C

ii. B and C

iii. A and D

iv. B and D

b. How many iterations does the following loop execute?

MOV CX, 0008H
MOV AX, 0000H

START: ADD AX, 0002H
 CMP AX, CX
 LOOPNE START

i. 2

ii. 3

iii. 4

iv. 6

v. 8

 3

1 (cont.)
c. Assuming A, B, C, and D are all signed integers, what compound condition does the

following instruction sequence test?

MOV AX, D
CMP A, AX
SETL BL
SUB AX, B
CMP AX, C
SETGE BH
AND BL, BH

i. (A < D) && (B >= C)

ii. (A < D) && (D >= C)

iii. (A <= D) && (D – B >= C)

iv. (A < D) && (D – B >= C)

v. (A <= D) && (B – D >= C)

d. Which of the following statements about virtual memory are true?

A. When translating a virtual address to a physical address, the virtual page number is
replaced by the appropriate physical frame number, while the lower bits of the
address—the page offset—remain the same.

B. The number of bits in the page offset depends on the number of pages in the virtual
address space.

C. Because all virtual pages cannot fit in physical memory, each page table entry
requires a valid bit to indicate if the frame number in that entry is valid.

D. The TLB is a sandwich containing the same ingredients as a BLT, but with those
ingredients stacked in the opposite order.

i. Only A

ii. Only C

iii. A and B

iv. A and C

v. A, B, and C

 4

2. (40 points) Protected mode memory accesses
Assume the 80386 is running in protected mode with the state given below. Note that each
memory location shown contains a descriptor for a particular segment.

GDTR = 123000080017
LDTR = 0008
LDTR cache: base = 12300028
LDTR cache: limit = 0027

Memory Address
Base = 030010F0
Limit = 020F

12300000

Base = 12300020
Limit = 0007

12300008

Base = 12300028
Limit = 0027

12300010

Base = 1200C000
Limit = FFFF

12300018

Base = 12340000
Limit = 00FF

12300020

DS = 0006
ESI = 0000CD04
EBX = 00031A0

Memory Address
Base = AC000000
Limit = 0317

12300028

Base = 01610200
Limit = 03F7

12300030

Base = 03170214
Limit = 030F

12300038

Base = 06B01000
Limit = 0F07

12300040

Base = 05000120
Limit = 000F

12300048

What address does each of the following instructions access? (Hint: solving part (a) should
help you solve parts (b) and (c)).

a. MOV AX, [00H]

b. ADD [SI], CX

c. SHL [BX+10H], 7

 5

3. (40 points) Assembly language
For each instruction sequence shown below, list all changed registers, memory locations,
and/or flags, as well as their new values.

a. Initial state:

• (EAX) = 0000ABC0H
• (EBX) = 000012ACH
• (ECX) = 00000020H
• (EDX) = 00000000H
• (ESI) = 00000100H
• (EDI) = 00000200H
• (DS:100H) = 00H
• (DS:101H) = F0H
• (DS:110H) = 00H

• (DS:111H) = FFH
• (DS:200H) = 30H
• (DS:201H) = 00H
• (DS:210H) = AAH
• (DS:211H) = AAH
• (DS:220H) = 55H
• (DS:221H) = 55H
• (DS:300H) = AAH
• (DS:301H) = 55H

Also, assume all flags (ZF, CF, SF, PF, OF) are initialized to 0.

Instructions:
 BSF DX, AX
 JNZ END
 BT BX, DX
 SETNC [100H]
END: AND CL, [100H]

 6

3 (cont.)
b. Initial state:

• (EAX) = 00000016H
• (EBX) = 00000317H
• (ECX) = 00000010H
• (EDX) = 0000ABCDH
• (ESI) = 00000100H
• (EDI) = 00000106H
• (DS:100H) = 0FH
• (DS:101H) = F0H
• (DS:102H) = 00H

• (DS:103H) = FFH
• (DS:104H) = 30H
• (DS:105H) = 00H
• (DS:106H) = AAH
• (DS:107H) = AAH
• (DS:108H) = 55H
• (DS:109H) = 55H
• (DS:10AH) = AAH
• (DS:10BH) = 55H

Also, assume all flags (ZF, CF, SF, PF, OF) are initialized to 0.

Instructions:
 CMP AX, BX
 JE L1
 JG L2
 INC AX
 JMP END
L1: DEC AX
 JMP END
L2: MOV AX, BX
END: MOV [DI+02H], AX

 7

The following pages contain references for use during the exam: tables containing the 80386
instruction set and condition codes. You may detach these sheets from the exam and do not need
to submit them when you finish.

Remember that:
• Most instructions can have at most one memory operand.
• Brackets [] around a register name, immediate, or combination of the two indicates an

effective address. That address is in the data segment unless otherwise specified.
o Example: MOV AX, [10H] contents of DS:10H moved to AX

• Parentheses around a logical address mean “the contents of memory at this address”.
o Example: (DS:10H) the contents of memory at logical address DS:10H

Category Instruction Example Meaning

Data
transfer

Move MOV AX, BX AX = BX
Move & sign-extend MOVSX EAX, DL EAX = DL, sign-extended

to 32 bits
Move and zero-extend MOVZX EAX, DL EAX = DL, zero-extended

to 32 bits
Exchange XCHG AX, BX Swap contents of AX, BX
Load effective
address

LEA AX, [BX+SI+10H] AX = BX + SI + 10H

Load full pointer LDS AX, [10H]

LSS EBX, [100H]

AX = (DS:10H)
DS = (DS:12H)

EBX = (DS:100H)
SS = (DS:104H)

Arithmetic

Add ADD AX, BX AX = AX + BX
Add with carry ADC AX, BX AX = AX + BX + CF
Increment INC [DI] (DS:DI) = (DS:DI) + 1
Subtract SUB AX, [10H] AX = AX – (DS:10H)
Subtract with borrow SBB AX, [10H] AX = AX – (DS:10H) – CF
Decrement DEC CX CX = CX – 1
Negate (2’s
complement)

NEG CX CX = -CX

Unsigned multiply
(all operands are non-
negative, regardless
of MSB value)

MUL BH
MUL CX
MUL DWORD PTR [10H]

AX = BH * AL
(DX,AX) = CX * AX
(EDX,EAX) = (DS:10H) *
EAX

Signed multiply
(all operands are
signed integers in 2’s
complement form)

IMUL BH
IMUL CX
IMUL DWORD PTR[10H]

AX = BH * AL
(DX,AX) = CX * AX
(EDX,EAX) = (DS:10H) *
EAX

Unsigned divide DIV BH

DIV CX

DIV EBX

AL = AX / BH (quotient)
AH = AX % BH (remainder)

AX = EAX / CX (quotient)
DX = EAX % CX (remainder)

EAX = (EDX,EAX) / EBX (Q)
EDX = (EDX,EAX) % EBX (R)

 8

Category Instruction Example Meaning

Logical

Logical AND AND AX, BX AX = AX & BX
Logical inclusive OR OR AX, BX AX = AX | BX
Logical exclusive OR XOR AX, BX AX = AX ^ BX
Logical NOT
(1’s complement)

NOT AX AX = ~AX

Shift/rotate
(NOTE: for
all
instructions
except
RCL/RCR,
CF = last
bit shifted
out)

Shift left SHL AX, 7

SAL AX, CX

AX = AX << 7

AX = AX << CX

Logical shift right
(treat value as
unsigned, shift in 0s)

SHR AX, 7 AX = AX >> 7
(upper 7 bits = 0)

Arithmetic shift right
(treat value as signed;
maintain sign)

SAR AX, 7 AX = AX >> 7
(upper 7 bits = MSB of
original value)

Rotate left ROL AX, 7 AX = AX rotated left by 7
(lower 7 bits of AX =
upper 7 bits of original
value)

Rotate right ROR AX, 7 AX=AX rotated right by 7
(upper 7 bits of AX =
lower 7 bits of original
value)

Rotate left through
carry

RCL AX, 7 (CF,AX) rotated left by 7
(Treat CF & AX as 17-bit
value with CF as MSB)

Rotate right through
carry

RCR AX, 7 (AX,CX) rotated right by
7
(Treat CF & AX as 17-b8t
value with CF as LSB)

Bit test/
scan

Bit test BT AX, 7 CF = Value of bit 7 of AX
Bit test and reset BTR AX, 7 CF = Value of bit 7 of AX

Bit 7 of AX = 0
Bit test and set BTS AX, 7 CF = Value of bit 7 of AX

Bit 7 of AX = 1
Bit test and
complement

BTC AX, 7 CF = Value of bit 7 of AX
Bit 7 of AX is flipped

Bit scan forward BSF DX, AX DX = index of first non-
zero bit of AX, starting
with bit 0
ZF = 0 if AX = 0, 1
otherwise

Bit scan reverse BSR DX, AX DX = index of first non-
zero bit of AX, starting
with MSB
ZF = 0 if AX = 0, 1
otherwise

 9

Category Instruction Example Meaning

Flag
control

Clear carry flag CLC CF = 0
Set carry flag STC CF = 1
Complement carry
flag

CMC CF = ~CF

Clear interrupt flag CLI IF = 0
Set interrupt flag STI IF = 1
Load AH with
contents of flags
register

LAHF AH = FLAGS

Store contents of AH
in flags register

SAHF FLAGS = AH
(Updates SF,ZF,AF,PF,CF)

Conditional
tests

Compare CMP AX, BX Subtract AX – BX
Updates flags

Byte set on condition SETcc AH AH = FF if condition true
AH = 0 if condition false

Jumps and
loops

Unconditional jump JMP label Jump to label
Conditional jump Jcc label Jump to label if

condition true
Loop LOOP label Decrement CX; jump to

label if CX != 0
Loop if equal/zero LOOPE label

LOOPZ label
Decrement CX; jump to
label if (CX != 0) &&
(ZF == 1)

Loop if not equal/zero LOOPNE label
LOOPNZ label

Decrement CX; jump to
label if (CX != 0) &&
(ZF == 0)

Subroutine-
related
instructions

Call subroutine CALL label Jump to label; save
address of instruction
after CALL

 Return from
subroutine

RET label Return from subroutine
(jump to saved address
from CALL)

 Push PUSH AX

PUSH EAX

SP = SP – 2
(SS:SP) = AX

SP = SP – 4
(SS:SP) = EAX

 Pop POP AX

POP EAX

AX = (SS:SP)
SP = SP + 2

EAX = (SS:SP)
SP = SP + 4

 Push flags PUSHF Store flags on stack
 Pop flags POPF Remove flags from stack
 Push all registers PUSHA Store all general purpose

registers on stack
 Pop all registers POPA Remove general purpose

registers from stack

 10

Condition

code Meaning Flags

O Overflow OF = 1
NO No overflow OF = 0
B
NAE
C

Below
Not above or equal
Carry

CF = 1

NB
AE
NC

Not below
Above or equal
No carry

CF = 0

S Sign set SF = 1
NS Sign not set SF = 0
P
PE

Parity
Parity even PF = 1

NP
PO

No parity
Parity odd PF = 0

E
Z

Equal
Zero ZF = 1

NE
NZ

Not equal
Not zero ZF = 0

BE
NA

Below or equal
Not above CF OR ZF = 1

NBE
A

Not below or equal
Above CF OR ZF = 0

L
NGE

Less than
Not greater than or equal SF XOR OF = 1

NL
GE

Not less than
Greater than or equal SF XOR OF = 0

LE
NG

Less than or equal
Not greater than (SF XOR OF) OR ZF = 1

NLE
G

Not less than or equal
Greater than (SF XOR OF) OR ZF = 0

	Spring 2012
	Exam 2
	April 4, 2012
	TOTAL SCORE

