EECE.4810/EECE.5730: Operating Systems
 Spring 2018

Lecture 16: Key Questions
April 2, 2018

1. Explain how segmentation can be used to manage address spaces.
2. What information is included in a typical segment table?
3. Example: Given the segment table below:

Segment \#	V	Base	Bounds	Access
0	1	219	600	read/write
1	1	2300	14	$\mathrm{read} / \mathrm{write}$
2	1	90	100	$\mathrm{read} / \mathrm{exec}$
3	1	1327	580	$\mathrm{read} / \mathrm{write}$
4	0	1952	96	read

What is the physical address corresponding to each virtual address below? Virtual addresses are specified as a pair of values: the segment number and offset.
a. 0,430
b. 1,10
c. 2,500
d. 3,400
e. 4,112
4. Explain the basics of memory management through paging.
5. Example: Consider a logical address space of 256 pages with 4 KB page size, mapped onto a physical memory of 64 frames
a. How many bits are in the virtual address?
b. How many bits are in the physical address?
c. What's the total size of each address space (virtual and physical)?
6. Example: Given a system using 32-bit virtual addresses, a 4 KB page size, and 4 bytes in each page table entry, what's the size of the page table?
7. Describe the organization of a multilevel page table.
8. Describe the organization of a hashed page table.
9. Describe the organization of an inverted page table.
10. Describe the contents of a page table entry.
11. How is a page chosen to evict when necessary?
12. What is the purpose of the dirty bit?
13. Example: Assume the current process uses the page table below:

Virtual page $\#$	Valid bit	Reference bit	Dirty bit	Frame \#
0	1	1	0	4
1	1	1	1	7
2	0	0	0	--
3	1	0	0	2
4	0	0	0	--
5	1	0	1	0

a. Which virtual pages are resident in physical memory?
b. Which resident pages are candidates for eviction?
c. Assuming 1 KB pages and 16 -bit addresses, what physical addresses would the virtual addresses below map to?
i. $0 \times 041 \mathrm{C}$
ii. $0 x 08 \mathrm{AD}$
iii. 0x157B

