Lecture 16: Key Questions April 2, 2018

1. Explain how segmentation can be used to manage address spaces.

2. What information is included in a typical segment table?

3. **Example:** Given the segment table below:

Segment #	V	Base	Bounds	Access
0	1	219	600	read/write
1	1	2300	14	read/write
2	1	90	100	read/exec
3	1	1327	580	read/write
4	0	1952	96	read

What is the physical address corresponding to each virtual address below? Virtual addresses are specified as a pair of values: the segment number and offset.

a. 0,430

b. 1,10

c. 2, 500

d. 3,400

e. 4, 112

4. Explain the basics of memory management through paging.

- 5. <u>Example:</u> Consider a logical address space of 256 pages with 4 KB page size, mapped onto a physical memory of 64 frames
- a. How many bits are in the virtual address?

b. How many bits are in the physical address?

c. What's the total size of each address space (virtual and physical)?

6. **Example:** Given a system using 32-bit virtual addresses, a 4 KB page size, and 4 bytes in each page table entry, what's the size of the page table?

7. Describe the organization of a multilevel page table.

8. Describe the organization of a hashed page table.

9. Describe the organization of an inverted page table.

10. Describe the contents of a page table entry.

11. How is a page chosen to evict when necessary?

12. What is the purpose of the dirty bit?

Virtual page #	Valid bit	Reference bit	Dirty bit	Frame #
0	1	1	0	4
1	1	1	1	7
2	0	0	0	
3	1	0	0	2
4	0	0	0	
5	1	0	1	0

13. **Example:** Assume the current process uses the page table below:

- a. Which virtual pages are resident in physical memory?
- b. Which resident pages are candidates for eviction?
- c. Assuming 1 KB pages and 16-bit addresses, what physical addresses would the virtual addresses below map to?
- i. 0x041C
- ii. 0x08AD

iii. 0x157B