
 1

EECE.4810/EECE.5730: Operating Systems
Spring 2018

Lecture 10: Key Questions

February 28, 2018

1. (Review) Describe semaphores, including the defined operations, the two general types, and

how they can be used for both mutual exclusion and ordering.

EECE.4810/5730: Operating Systems M. Geiger
Spring 2018 Lecture 10: Key Questions

 2

2. Explain deadlock between threads, using the dining philosophers problem (pseudo-code
given below) as an example.

Dining Philosophers: structure of philosopher i:
do {
 down(chopstick[i]);
 down(chopStick[(i + 1) % 5]);

 // eat

 up(chopstick[i]);
 up(chopstick[(i + 1) % 5]);

 // think
} while (TRUE);

3. What conditions are necessary for deadlock to occur?

EECE.4810/5730: Operating Systems M. Geiger
Spring 2018 Lecture 10: Key Questions

 3

4. What general strategies can be used to handle deadlock?

5. How can deadlock be prevented?

6. Explain the Banker’s Algorithm for deadlock prevention.

EECE.4810/5730: Operating Systems M. Geiger
Spring 2018 Lecture 10: Key Questions

 4

7. Example: Consider a multithreaded bank software package in which the following function is
used to transfer money. Assume that the program contains a global array of locks, locks[],
with one entry per account number, such that locks[i] is the lock for account number i.

void transfer_money(int src_acct, int dest_acct, int amt) {
 locks[src_acct].lock(); // Lock account sending money
 locks[dest_acct].lock(); // Lock account receiving money
 <transfer money>
 locks[dest_acct].unlock();
 locks[src_acct].unlock();
}

Explain how this function can deadlock if called in multiple threads, and rewrite (in pseudo-code
or actual code) the function to remove the deadlock condition.

