
 1

EECE.3220: Data Structures
Fall 2019
Exam 3

December 21, 2019

Name: ___

For this exam, you may use two 8.5” x 11” double-sided pages of notes. All electronic devices
(e.g., calculators, cell phones) are prohibited. If you have a cell phone, please turn off your ringer
prior to the start of the exam to avoid distracting other students.
The exam contains 3 sections for a total of 100 points, as well as a 10-point extra credit section.
Please answer all questions in the spaces provided. If you need additional space, use the back of
the page on which the question is written and clearly indicate that you have done so.
Please read each question carefully before you answer, especially the multiple-choice questions.
Question 4c has exactly one correct answer, while the remaining multiple-choice questions (4a,
4b, 4d, 4e, 4f) may have more than one correct answer.
You will be provided with a sheet containing class definitions that are necessary for Questions
2b and 3b. You do not have to submit this sheet with the exam.

You will have three hours to complete this exam.

S1: Recursion / 10
S2: Binary search trees / 44
S3: Heaps / 22
S4: Multiple choice
 (heapsort,
 priority queues,
 hash tables, C++
 containers)

 / 24

 TOTAL SCORE / 100
S5: EXTRA CREDIT / 10

 2

1. (10 points) Recursion
For the short program shown below, list the output exactly as it will appear on the screen. Be
sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.
int f1(int v1, int v2) {
 cout << "v1 = " << v1 << ", v2 = " << v2 << '\n';
 if (v1 == 0) {
 cout << "Returning 1\n";
 return 1;
 }
 else if (v2 == 0) {
 cout << "Returning 2\n";
 return 2;
 }
 else if (v1 > v2) {
 cout << "v1 > v2\n";
 return 1 + f1(v1 / 2, v2 / 2);
 }
 else {
 cout << "v1 <= v2\n";
 return 2 + f1(v2 / 3, v1 / 3);
 }
}

int main() {
 cout << "Final return value = " << f1(7, 12) << '\n';
 return 0;
}

 3

2. (44 points) Binary search trees
a. (12 points) Show the binary search tree built by inserting the integers below in the order

shown (beginning with 10). Assume the tree is empty to start.

Integers: 10, 4, 8, 15, 25, 12, 6, 7

 4

2 (continued)
b. (12 points) To print a binary search tree’s contents, visit all the nodes and print their contents.

The order in which the nodes are visited determines the order of the output values.
In this problem, the top-level function for the tree object (the BST class defined on the extra
sheet) simply calls a function that takes a node pointer as an argument. That function does the
work of visiting all the nodes and printing each of their contents.

The top-level print function is shown. You must write the printtree() function, which takes
two arguments: an output stream reference, os, and a pointer to the root of a given subtree, st.
printtree() prints the data in the node st points to and visits its left and right children to do
the same.
I strongly suggest writing this function recursively, as an iterative solution is significantly more
difficult to write without parent pointers in the tree.

For full credit, write printtree() so all tree data are printed in order from lowest to highest.
For example, given the data in Question 2a, the function prints: 4 6 7 8 10 12 15 25
void BST::print(ostream &os) {
 printtree(os, root);
 os << "\n";
}

void BST::printtree(ostream &os, BNode *st) {

}

 5

2 (continued)

c. (8 points) For each part of this problem, you are given an AVL tree and an operation (add or
remove a specific value) to perform. Show the modified tree after the specified operation,
which will require at least one rotation to maintain the properties of an AVL tree.

i. Add 19 to the tree below

ii. Remove 30 from the tree below

 6

2 (continued)
d. (12 points) The tree below represents a red-black tree, but the colors of only two nodes are

shown. The node storing the value 40 is black, while the node storing 70 is red. Use the rules
for red-black trees we discussed in class to determine the correct color for each remaining
node and write that color on the blank line in the node.

50

85

75

30

40

BLACK

80

60

70

RED

 7

3. (22 points) Heaps
a. (10 points) For each of the binary trees below, indicate (i) whether it is a max-heap (by

circling “Yes” or “No”), and (ii) if not, which heap property it violates.

(i) Is this tree a max-heap?

Yes No

(ii) If no, which heap property
does it violate?

(i) Is this tree a max-heap?

Yes No

(ii) If no, which heap property
does it violate?

(i) Is this tree a max-heap?

Yes No

(ii) If no, which heap property
does it violate?

 8

3 (continued)
b. (12 points) For some heap operations, the number of non-leaf nodes in the heap is a useful

piece of information. Use the blank space below to write a function, countNonLeaves(),
that returns the number of non-leaf nodes in a Heap object. Note that:

• The number of non-leaf nodes is a function of the heap size.

• The number of nodes in each complete level is a power of 2.
o The top level (root) has 1 node, the 2nd level has 2, the 3rd level has 4, and so on.
o So, a heap with 2 levels has 1 non-leaf node (since the bottom level is composed

solely of leaf nodes); a heap with 3 levels has 1 + 2 = 3 non-leaf nodes, and so on.

This function uses the Heap class definition shown on the extra sheet provided with the exam.
You should assume that this Heap class is implemented similarly to the heaps discussed in
lecture. Specifically:

• The root of the heap is stored in the first array location (heaparr[0]).

• No array locations are left empty for swap space.

unsigned Heap::countNonLeaves() {

}

 9

4. (24 points, 4 points each) Multiple choice (heapsort, priority queues, hash tables, C++
containers)

a. Which of the following statements about heapsort are true? Circle ALL correct answers—
there may be more than one.

i. Heapsort has a worst-case execution time of O(n log2(n)).

ii. The heapsort algorithm can only be used on arrays whose contents represent a heap
before the sorting begins.

iii. After running heapsort on an array to sort the array from lowest to highest value, the
array’s contents represent a min-heap.

iv. The heapify algorithm, which is part of heapsort, has a worst-case execution time of
O(n log2(n))

b. Which of the following statements about priority queues are true? Circle ALL correct

answers—there may be more than one.

i. A priority queue must be implemented using a heap.

ii. If a priority queue is implemented using a heap, all priority queue operations can be
written in terms of heap operations.

iii. The contents of a priority queue must be ordered from highest priority to lowest priority.

iv. Storing data in a priority queue allows you to access the highest-priority item in the
queue in a constant amount of time (O(1)).

 10

4 (continued)

c. Say you have a hash table containing 10 buckets, and you want to store a total of 20 items in

the table. What is the minimum and maximum possible number of collisions (instances in
which a new item maps to the same bucket as another item) in this scenario? This question
has exactly one correct answer.

i. Minimum = 0 collisions; maximum = 10 collisions

ii. Minimum = 0 collisions; maximum = 19 collisions

iii. Minimum = 0 collsions; maximum = 20 collisions

iv. Minimum = 10 collisions; maximum = 19 collisions

v. Minimum = 10 collisions; maximum = 20 collisions

d. Which of the following statements about the C++ sequence containers and sequence
container adapters are true? Circle ALL correct answers—there may be more than one.

i. All sequence containers must be implemented as linked data structures.

ii. The key difference between the array and vector types is that a vector can be
resized, while an array can not.

iii. The basic list can be traversed in either direction, while the forward_list can only
be traversed from first to last element.

iv. A sequence container adapter always stores its data in a vector, then includes rules
about how the data in the vector is accessed to create a stack, queue, or priority queue.

 11

4 (continued)

e. Which of the following statements about the C++ associative containers are true? Circle
ALL correct answers—there may be more than one.

i. Say you have the same data set stored in two different associative containers—one an

ordered container (for example, set or map), and the other one an unordered version of
the same type of container. Searching for an item in the ordered container will always be
faster than searching for the same item in the unordered container.

ii. Ordered associative containers are typically implemented using binary search trees to
ensure worst-case search times of O(log n).

iii. In a map, the data being stored represents the key value used to order that data. In a set,
the data being stored is associated with a separate key used to order the data.

iv. Unordered associative containers are often implemented using hash tables, where the key
is fed into a hash function to determine the bucket used to store the data.

f. Circle one (or more) of the choices below that you feel best “answers” this “question.”

i. “Thanks for the free points.”

ii. “This is the best final exam I’ve taken today.”

iii. “At least we’re getting this out of the way early in the day.”

iv. “I would have preferred to take this on Tuesday.”

v. None of the above.

 12

5. (10 points) EXTRA CREDIT
You are given the postfix expression shown below:
 5 3 + 6 8 - * 1 3 + /

Complete the table below to show how a stack can be used to evaluate this expression, asyour
Program 3 solution would do. I’ve filled in all tokens; you show what operation is performed for
each token (it’s pushed on the stack or it causes data to be popped and a value to be computed)
and the stack state once that operation is done. I’ve completed the first row.

Note that a postfix expression of the form v1 v2 op is evaluated as v1 op v2. So, for
example, 8 2 – represents the operation 8 – 2.

Token

Operation
(if data popped & result computed, list
values removed and result of operation)

Stack state
(show state as list of values with top of

stack listed first)

5 5 pushed on stack 5

3

+

6

8

-

*

1

3

+

/

	Fall 2019
	Exam 3
	December 21, 2019
	 TOTAL SCORE
	S5: EXTRA CREDIT

