
 1

EECE.3220: Data Structures
Fall 2019

Exam 1 Solution

1. (24 points) C++ input/output
For each short program shown below, list the output exactly as it will appear on the screen. Be
sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

a. (12 points)
int main() {
 int iv1 = 6;
 int iv2 = 36;
 double dval = 103.2019;

 cout << iv1 << endl << iv2;
 cout << setprecision(4) << dval << '\n'; At this point,
 fixed format isn’t
 specified, so
 precision = #
 significant figures
 Also, lack of
 newline means dval
 (103.2) prints
 next to iv2 (36)

 cout << fixed << "Now, iv1 = "
 << iv1 << ", iv2 = " << iv2
 << ",\ndval = " << setprecision(3) Now, precision = #
 << dval << endl; digits after
 return 0; decimal point
}

OUTPUT:
6
36103.2
Now, iv1 = 6, iv2 = 36,
dval = 103.202

 2

1 (continued)
b. (12 points)

For this program, assume the user inputs the three lines below. The letter 'E' in Exam is the first
character the user types. There is one space (' ') between Exam and 1 on the first line, one space
between 2-4 and PM on the second line, and no spaces on the third line. Assume each line ends
with a newline character ('\n').

You must determine how the program handles this input and then print the appropriate results.
Note that the program may not read all characters on the input lines, but no input statement fails
to read data—an appropriate value is assigned to every variable.

Exam 1
2-4 PM
10.3.2019

int main() {
 int i1, i2;
 double d1, d2;
 char c1, c2;
 string str1, str2;

 cin.get(c1);
 cin.ignore(1);
 cin >> str1 >> i1 >> d1 >> i2 >> c2;
 getline(cin, str2); // Slightly different getline syntax to
 // read line into string object
 cin >> d2;

 cout << i1 << ", " << i2 << '\n';
 cout << d1 << ", " << d2 << '\n';
 cout << c1 << ", " << c2 << '\n';
 cout << str1 << ", " << str2 << '\n';

 return 0;
}

Solution: This program handles the input as follows:

• cin.get(c1) reads first character into c1  c1 = 'E'
• cin.ignore(1) skips a single character ('x')
• Next line reads a string, an int, a double, another int, and a non-space character:

o str1 = "am"
o i1 = 1
o d1 = 2
o i2 = -4
o c2 = 'P'

• getline(cin, str2) reads the rest of the line into str2  str2 = "M"
• cin >> d2 reads the next real number into d2  d2 = 10.3

 3

1b. (continued) So, the output is as follows:

1, -4
2, 10.3
E, P
am, M

 4

2. (12 points) Functions
For the short program shown below, list the output exactly as it will appear on the screen. Be sure
to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

int f1(int &arg1, int arg2) { arg1 is a reference argument,
 arg1 = arg1 * 2; so function changes variable
 arg2 = arg2 / 2; passed as first argument.
 return arg1 + arg2; arg2 is passed by value, so
} it’s unchanged outside fn.

int f2(int *arg3, int arg4) { arg3 is a pointer, so
 *arg3 = arg4 + 5; so function changes variable
 arg4 = arg4 - 5; passed as first argument.
 return *arg3 + arg4; arg4 is passed by value, so
} it’s unchanged outside fn.

int f3(int &arg5, int &arg6) { Both arguments are reference
 arg5 = arg6; arguments, so function
 arg6 = arg5 / 4; changes both variables
 return arg5 + arg6; passed to it
}

int main() {
 int v1, v2(5), v3(8);

 v1 = f1(v2, v3); v2 = v2 * 2 = 10, v3 unchanged
 v1 = v2 + v3/2 = 14
 cout << v1 << ' ' << v2 << ' ' << v3 << '\n';

 v2 = f2(&v3, v1); v3 = v1 + 5 = 19, v1 unchanged
 v2 = v3 + (v1 – 5) = 28
 cout << v1 << ' ' << v2 << ' ' << v3 << '\n';

 v3 = f3(v1, v2); v1 = v2 = 28
 v2 = v1 / 4 = 7
 v3 = v1 + v2 = 35
 cout << v1 << ' ' << v2 << ' ' << v3 << '\n';

 return 0;
}

OUTPUT:
14 10 8
14 28 19
28 7 35

 5

3. (20 points) Strings
a. (10 points) For the short program shown below, list the output exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

int main() {
 string s1, s2("exam"), s3("October");

 if (s1.empty() && s2.empty()) { Condition is false since
 s1 = s3; s2 is non-empty
 s2 = "test";
 }
 else if (s1.length() < 5) { s1.length() = 0, so
 s1 = "test"; condition is true and
 } s1 is set to "test"
 else
 s3 = "test";

 cout << s1 << ' ' << s2 << ' ' << s3 << '\n';

 s1[2] = s2.at(1); Changes 's' to 'x'  s1 = "text"

 s2 += "ple"; s2 = "exam" + "ple" = "example"

 s3 = s2.substr(2, 2) + s3.substr(4); s3 = "am" + "ber"
 = "amber"

 cout << s1 << ' ' << s2 << ' ' << s3 << '\n';

 return 0;
}

OUTPUT:

test exam October

text example amber

 6

3 (continued)
b. (10 points) Complete the function described below:
void removeDuplicates(string &str);

Removes all instances of consecutive, repeated characters from the argument str, leaving just
one of each character in the string. For example:

• If string s1 = "aa bb cc dd", after calling removeDuplicates(s1),
s1 = "a b c d"

• If string s2 = "no repeats", after calling removeDuplicates(s2),
s2 = "no repeats"

• If string s3 = "1223334444", after calling removeDuplicates(s3),
s3 = "1234"

The comments in the function provide hints about one potential implementation of this function;
if you have a different solution, feel free to ignore the comments.

Other solutions may be valid
void removeDuplicates(string &str) {
 unsigned i; // Loop index
 string tmp; // Temporary string

 // Identify repeated characters in str and only copy one of
 // each to tmp
 i = 1;
 while (i < str.length()) {
 if (str.at(i) != str.at(i - 1))
 tmp += str.at(i - 1);
 i++;
 }
 tmp += str.at(str.length() - 1);

 // Copy temporary string to str before end of function
 str = tmp;

}

 7

4. (20 points) Algorithmic complexity
For each function in this problem, determine (a) an equation for the worst-case computing time
T(n) (expressed as a function of n, i.e. 2n + 4) and (b) the order of magnitude (expressed using
big O notation, i.e. O(n)). Note that:

• Each executable line of code is numbered so you can refer to it by number if necessary.

• A for loop may be treated as a single statement, not three separate statements.

a. (10 points)

int functionA(int n){

 int i, j;

1 int total = 1; 1

2 int count = 0; 1

3 for (i = 0; i <= n; i++) { n + 2

4 count++; n + 1

5 j = i; n + 1

6 while (j > 0) { n*(n+1)/2 + 1 = n2/2 + n/2 + 1

7 total = total * 2; n*(n+1)/2 = n2/2 + n/2

8 j--; n*(n+1)/2 = n2/2 + n/2
 }
 }

9 return total; 1
}

Worst case analysis: The nested while loop is the trickiest part of this problem, which I graded
leniently. Here’s how we get the formula n*(n+1)/2 for the total number of while loop iterations:

• The number of while loop iterations matches the index value, i, for the for loop—the
function sets j = i outside the while loop, then count down until j = 0.

• i goes from 0 to n. So, when j = 0, the while loop has 0 iterations. When j = 1, the while
loop has 1 iteration. That pattern continues, with the last for loop iteration containing a
while loop with n iterations.

• The total number of iterations for the while loop can therefore be expressed by the sum:
0 + 1 + 2 + … + n, which can itself be expressed by the formula n*(n+1)/2.

Therefore, T(n) = 1 + 1 + (n + 2) + (n + 1) + (n + 1) +
 (n2/2 + n/2 + 1) + (n2/2 + n/2) + (n2/2 + n/2) + 1
 = 3n2/2 + 9n/2 + 8

The order of magnitude for the worst-case execution time is therefore O(n2).

 8

4 (continued)
For each function in this problem, determine (a) an equation for the worst-case computing time
T(n) (expressed as a function of n, i.e. 2n + 4) and (b) the order of magnitude (expressed using
big O notation, i.e. O(n)). Note that:

• Each executable line of code is numbered so you can refer to it by number if necessary.

• A for loop may be treated as a single statement, not three separate statements.

b. (10 points)
void functionB(int arr[], int n){

 int i, j;

1 if (n >= 20) { 1

2 for (i = 0; i < 20; i++) 21

3 arr[i]++; 20
 }

4 if (n >= 30) { 1

5 for (i = 0; i < 30; i++) { 31

6 for (j = i; j < 30; j++) { 32 * 31 / 2 = 496

7 arr[i] += arr[j]; 31 * 30 / 2 = 465
 }
 }
 }

8 if (n >= 40) { 1

9 for (i = 39; i >= 0; i--) 41

10 arr[i] = arr[i] * 2; 40
 }
}

Worst case analysis: I didn’t plan this, but I used the same loop structure on parts (a) and (b). The
number of iterations for the inner for loop starting on line 6 depends on the index of the outer loop
... just like the nested while loop in the previous problem. So, n*(n+1)/2 gives you the total number
of iterations. For line 6, n = 31, as you’re adding values from 1 to 31 (line 6 executes 31 times
when i = 0). For line 7, n = 30. That’s where 496 and 465 come from.
In all cases, though, note that the number of iterations is independent of n—every loop uses a
constant as a boundary. The worst case would be for n to be greater than or equal to 40, making
all three conditions (lines 1, 4, and 8) true and causing all lines of the function to execute. So:
 T(n) = 1 + 21 + 20 + 1 + 31 + 496 + 465 + 1 + 41 + 40 = 1117

and the order of magnitude for that worst-case execution time is O(1).

 9

5. (24 points, 4 points each) Multiple choice: classes, dynamic allocation, vectors
For each of the multiple choice questions below, clearly indicate your response(s) by circling or
underlining all choices you think best answer the question.

Parts a, b, and c refer to the following class definition:
class MyClass {
public:
 MyClass();
 MyClass(int i, string s);
 void setMem(int arg1, int arg2, string arg3);
 void display(ostream &out);
private:
 int mem1, mem2;
 string mem3;
};

a. Which of the following statements is a valid declaration for an object of type MyClass?

This question has at least one correct answer, but may have more than one correct
answer! Circle ALL choices that correctly answer the question.

i. MyClass mc1;

ii. MyClass mc2(1, "two");

iii. MyClass mc3(3, 4, "five"); Parameterized constructor

 only takes 2 arguments

iv. MyClass mc4.mem1 = 3; All sorts of wrong … can’t
 declare an object and
 immediately access a data
 member, and that data
 member is private anyway

v. MyClass(0, "zero"); Doesn’t actually declare

 anything—there’s no object
 name here, just the type
 name

 10

5 (continued)

Part b uses the same class definition as part a:
class MyClass {
public:
 MyClass();
 MyClass(int i, string s);
 void setMem(int arg1, int arg2, string arg3);
 void display(ostream &out);
private:
 int mem1, mem2;
 string mem3;
};

b. Which of the following choices represents a valid implementation of a MyClass

constructor?

This question has at least one correct answer, but may have more than one correct
answer! Circle ALL choices that correctly answer the question.

i. MyClass() { Missing MyClass:: before fn. name
 mem1 = 0;
 mem2 = 1;
 mem3 = "blank";
}

ii. MyClass::MyClass() : mem1(10), mem2(3), mem3("Exam 1")
{}

iii. MyClass::MyClass(int i, string s) : mem1(i), mem2(i),
 mem3(s)
{}

iv. MyClass::setMem(int arg1, int arg2, string arg3) {
 mem1 = arg1;
 mem2 = arg2;
 mem3 = arg3;
}
Perfectly good setMem() definition, but that function isn’t
a constructor

 11

5 (continued)

Part c uses two class definitions:
class MyClass {
public:
 MyClass();
 MyClass(int i, string s);
 void setMem(int arg1, int arg2, string arg3);
 void display(ostream &out);
private:
 int mem1, mem2;
 string mem3;
};

class NewClass {
public:
 NewClass();
 NewClass(int i1, int i2, string s1, string s2);
 void someFunction(MyClass &randomReference);
private:
 MyClass x, y;
}

c. Which of the following represents a valid implementation of the NewClass parameterized

constructor? This question has exactly one correct answer.

i. NewClass::NewClass(int i1, int i2, string s1, string s2) {
 x = (i1, s1);
 y = (i2, s2);
}

ii. NewClass::NewClass(int i1, int i2, string s1, string s2) {
 x.mem1 = x.mem2 = i1;
 x.mem3 = s1;
 y.mem1 = y.mem2 = i2;
 y.mem3 = s2;
}

iii. NewClass::NewClass(int i1, int i2, string s1, string s2) :
 x(i1, s1), y(i2, s2) {}

iv. NewClass::NewClass(int i1, int i2, string s1, string s2) {
 someFunction(x);
 someFunction(y);
}

 12

5 (continued)
d. Which of the following choices dynamically allocates an array of doubles in which N represents

the array size and M represents the initial value assigned to each element in the array? This
question has exactly one correct answer.

i. double *arr = new double(N, M);

ii. double *arr = new double[N, M];

iii. double arr[N] = { M };

iv. double *arr = new double[N];

for (unsigned i = 0; i < N; i++)
 arr[i] = M;

e. Which of the following choices creates a vector of integers containing 5 elements and assigns

the value 3220 to every element? This question has at least one correct answer, but may
have more than one correct answer! Circle ALL choices that correctly answer the
question.

i. vector <int> v1(5) = 3220;

ii. vector <int> v2(5, 3220);

iii. vector <int> v3 = {3220, 3220, 3220, 3220, 3220};

iv. vector <int> v4;

for (unsigned i = 0; i < 5; i++)
 v4.push_back(3220);

f. Which of the following statements accurately reflect your opinion(s)? Circle all that apply (but
please don’t waste too much time on this “question”)!

i. “This course is moving too quickly.”

ii. “This course is moving too slowly.”

iii. “I’ve attended very few lectures, so I don’t really know what the pace of the course is.”

iv. “I hope the next exam is as easy as this question.”

All of the above are “correct.”

 13

6. (10 points) EXTRA CREDIT
Complete the function below, which returns a string formed by combining all substrings within
s1 that start with the character c and have length len. When building the new string, add a space
after each added substring. For example:

• buildStr("testing string", 't', 3) returns "tes tin tri"
• buildStr("accident", 'c', 2) returns "cc ci"
• buildStr("EECE.3220", 'x', 5) returns "" (empty string)

string buildStr(string s1, char c, int len) {
 unsigned i; // Character position within string
 string result; // Final result

 // GO THROUGH s1 AND FIND SUBSTRINGS TO CONCATENATE
 // Test all characters
 i = 0;
 while (i < s1.length()) {

 // If match is found, add substring of length len
 // and space to result
 if (s1.at(i) == c) {
 if (!result.empty())
 result += ' ';
 result += s1.substr(i, len);
 }
 i++;
 }

 return result;
}

	Fall 2019
	Exam 1 Solution

