EECE.3170: Microprocessor Systems Design I
Summer 2017

Lecture 13: Key Questions
June 19, 2017

1. What is an interrupt? What is an exception?

2. For what purposes are interrupts useful?

3. Describe the basic steps in interrupt processing.

EECE.3170: Microprocessor Systems Design | M. Geiger
Summer 2017 Lecture 13: Key Questions

4. What is an interrupt or exception vector? Describe briefly how an interrupt vector table
functions.

5. Explain how interrupts can be set up and managed in the PIC microcontrollers.

6. Explain the operation of the programs used to rotate the LEDs using interrupts (interrupt.asm
and interrupt.c).

EECE.3170: Microprocessor Systems Design | M. Geiger
Summer 2017 Lecture 13: Key Questions

7. Explain how the analog to digital converter module is configured in PIC microcontrollers.

EECE.3170: Microprocessor Systems Design | M. Geiger
Summer 2017 Lecture 13: Key Questions

8. Explain the operation of the programs used to test the ADC (a2d.asm and a2d.c).

9. Explain the programs that use the ADC result to vary the speed of rotation (vs_rotate.asm
and vs_rotate.c).

:\Users\Michael Geiger\Documents\courses\16....\src\picl6\assy\10 Interrupt\interrupt.asm

3k sk 3k 3k ok 3k sk ok 3k sk >k k sk >k 3k sk >k sk sk 3k sk sk 3k sk >k 3k sk >k 3k ok 3k sk ok 3k sk sk 3k sk >k sk sk 3k 3k ok 3k sk ok k sk >k 3k sk >k 3k ok 3k 3k >k 3k sk >k k ok %k k ok %k

Lesson 10 - Interrupts and Pull-ups

; This lesson will introduce interrupts and how they are useful. It will
; also introduce internal weak pull-ups that are available on most PICs.

; It should be noted that this lesson is more efficent than the last

; one, "Timer@". Notice how the processor is no longer waiting for
; Timere@ to roll over. Instead, we let the hardware modules do the work,
; freeing the CPU to do other things in the main loop

; The switch is no longer continuously polled for a button press. Instead,
; an interrupt will occur which will automically place the program counter
inside of the ISR where we can change directions outisde of normal code execution

LEDs rotate at a constant speed and the switch reverses their direction

PIC: 16F1829

; Assembler: MPASM v5.43
; IDE: MPLABX v1.10

Board: PICkit 3 Low Pin Count Demo Board

; Date: 6.1.2012

3k sk 3k 3k sk 3k sk ok 3k sk >k 3k sk >k 3k sk >k sk sk 3k sk sk 3k sk >k k sk >k 3k ok 3k sk ok 3k sk >k 3k sk >k 3k sk 3k 3k ok 3k sk ok k sk >k 3k ok >k sk ok 3k 3k >k 3k sk >k k ok %k k ok %k

* See Low Pin Count Demo Board User's Guide for Lesson Information*

o KOk kK ok ok ok ok sk ok sk sk ok ok ok ok sk sk ok ok ok sk ok 3k sk sk ok k ok ok 3k ok sk ok ok ok ok 3k 3k 3k ok ok ok ok 3k 3k sk ok ok ok ok 3k ok 3k %k ok ok ok ok >k ok k ok k sk k ok

#include <p16F1829.inc>

__CONFIG _CONFIG1, (_FOSC_INTOSC & _WDTE_OFF & _PWRTE_OFF & _MCLRE_OFF & _CP_OFF & _CPD_OFF &
_BOREN_ON & _CLKOUTEN_OFF & _IESO_OFF & _FCMEN_OFF);
__CONFIG _CONFIG2, (_WRT_OFF & _PLLEN OFF & _STVREN_OFF & _LVP_OFF);

errorlevel -302 ;surpress the 'not in bank®' warning
#tdefine SWITCH PORTA, 2 ;pin where SW1 is connected..NOTE: always READ from the PORT and
WRITE to the LATCH
#tdefine PULL_UPS ;if this is uncommented, JP5 can be pulled out
#tdefine LED_RIGHT OxFF ;keep track of LED direction
#tdefine LED_LEFT 0x00
cblock 0x70 ;shared memory location that is accessible from all banks
Direction
Delayl
endc
e LATC----mmmmmmmmmmm o -
; Bit#: -7---6---5---4---3---2---1---0---
5 LED: mmmmmemmmeeo- |DS4|DS3|DS2|Ds1| -
; ___
Org 0xe ;Reset Vector starts at 0x0000
bra Start ;main code execution
Org 0x0004 s;Interrupt Vector starts at address 0x0004
goto ISR
Start:
;Setup main init
banksel OSCCON ;bankl
mov 1w b'00111000" ;set cpu clock speed FO 500KHz
movwf OSCCON ;move contents of the working register into OSCCON
bsf TRISA, RA2 ;switch as input

banksel ANSELA ;bank3

"4

C:\Users\Michael_Geiger\Documents\courses\16....\src\picl6\assy\10 Interrupt\interrupt.asm

bcf ANSELA, RA2 ;digital
;can reference pins by their position in the PORT (2) or name (RA2)
;Configure the LEDs
banksel TRISC ;bankl
clrf TRISC ;make all of PORTC an output
banksel LATC ;bank2
movlw b'00001000" ;start with DS4 1it
;Setup Timer® as the delay
banksel OPTION_REG ;bank1l
mov 1w b'00000111" ;1:256 prescaler for a delay of: (insruction-cycle * 256-counts)*
prescaler = ((8uS * 256)*256) =~ 524mS
movwf OPTION_REG
bsf INTCON, TMROIE s;enable the rollover interrupt to occur
;Setup interrupt-on-change for the switch
bsf INTCON, IOCIE ;must set this global enable flag to allow any interrupt-on-change
flags to cause an interrupt
banksel IOCAN ;bank7
bsf IOCAN, TIOCAN2 ;when SW1 is pressed, enter the ISR (Note, this is set when a
FALLING EDGE is detected)
bsf INTCON, GIE ;must set this global to allow any interrupt to bring the program

into the ISR
;if this is not set, the interrupt flags will still get set, but
the ISR will never be entered

#ifdef PULL_UPS s;enter here if this is defined (not commented out)

banksel WPUA ;bank4

bsf WPUA, 2 ;enable the weak pull-up for the switch

banksel OPTION_REG ;bank1

bcf OPTION_REG, NOT_WPUEN j;enable the global weak pull-up bit

;this bit is active HIGH, meaning it must be cleared for it to be enabled

#tendif

mov 1w LED_RIGHT ;start with LEDs shifting to the right

movwf Direction

;Clear the RAM

clrf Delayl
MainlLoop:
bra MainLoop ;can spend rest of time doing something critical here
Debounce:
;delay for approximatly Sms
mov1lw d'209' 5 (1/(500KHZ/4))*209*3 = 5.016mS
movwf Delayl
DebouncelLoop:
decfsz Delayl, f ;1 instruction to decrement,unless if branching (ie Delayl = @)
bra DebouncelLoop ;2 instructions to branch
return
RotateRight:
1srf LATC, f ;logical shift right
btfsc STATUS, C ;did the bit rotate into the carry?
bsf LATC,3 ;yes, put it into bit 3.
retfie
RotatelLeft:
1s1f LATC, f ;logical shift left
btfsc LATC, 4 ;did it rotate out of the LED display?
bsf LATC, © ;yes, put in bit o
retfie

;Enter here if an interrupt has occured

;First, check what caused the interrupt by checking the ISR flags

C:\Users\Michael_Geiger\Documents\courses\16....\src\picl6\assy\10 Interrupt\interrupt.asm

ISR:

banksel IOCAF

btfsc

bra

bra
Service_SW1:

flags,
't
current

mov 1w
xorwf
andwf
forever

call

banksel
btfsc
retfie

mov 1w
xorwf
retfie

Service_TMRO:
bcf
forever
banksel
mov 1w
subwf
btfsc
bra
bra

end

IOCAF, 2
Service_SW1
Service_TMRO

OXFF
IOCAF, w
IOCAF, f

Debounce

PORTA
SWITCH

OXFF
Direction, f

INTCON, TOIF

LATC
LED_RIGHT
Direction, w
STATUS, Z
RotateRight
RotatelLeft

;This lesson only has 2 flags to check

;check the interrupt-on-change flag
;switch was pressed
;Timer® overflowed

;In order to ensure that no detected edge is lost while clearing
;the following 3 lines mask out only the known changed bits and don ¢

s;interfere with the others. A simple clrf would work, but this

;method is good practice

;MUST ALWAYS clear this in software or else stuck in the ISR
;clearing this will clear the INTCON, IOCIF bit as well
;delay for 5ms and then check the switch again

;banke

;is it still held down?
;nope, exit the ISR back to the main code

;toggle the direction state and save it back
;return to main code

;MUST ALWAYS clear this in software or else stuck in the ISR
;change to bank2

;check what direction currently in
;be sure to save in wreg so as to not corrupt 'Direction’

;end code generation

C:\Users\Michael_Geiger\Documents\courses\16....\src\pic16\c\10 Interrupt\interrupt.c

/**

>k 3k 3k 3k 3k 3k 3k sk sk 3k ok 3k ok >k >k >k >k 3k 3k 3k sk sk Sk ok ok 3k >k >k >k >k 3k 3k 3k 3k sk 3k sk ok 5k 3k >k >k >k >k 3k 3k 3k 3k sk 3k sk 3k 3k 3k >k >k >k >k 3k 3k k sk sk ok ok ok ok

Lesson 10 - "Interrupts and Pull-ups"

This lesson will introduce interrupts and how they are useful. It will
also introduce internal weak pull-ups that are available on most PICs.

It should be noted that this lesson is more efficent than the last
one, "Timer@". Notice how the processor is no longer waiting for
Timer® to roll over. Instead, we let the hardware modules do the work,
freeing the CPU to do other things in the main loop

The switch is no longer continuously polled for a button press. Instead,
an interrupt will occur which will automically place the program counter
inside of the ISR where we can change directions outisde of normal code execution

LEDs rotate at a constant speed and the switch reverses their direction

PIC: 16F1829
Compiler: XC8 v1.00
IDE: MPLABX v1.10

Board: PICkit 3 Low Pin Count Demo Board
Date: 6.1.2012

>k 3k 3k 3k 3k 3k sk sk sk 3k ok 3k ok >k >k >k >k 3k 3k 3k 3k 3k Sk ok 3k 3k >k >k >k >k 3k 3k 3k 3k sk 3k sk ok 5k 3k >k >k >k >k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k >k >k >k >k 3k 3k k sk sk ok ok ok ok

See Low Pin Count Demo Board User's Guide for Lesson Information*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k3K 3k 3k ok sk 3k ok 3k ok >k 3k 3k %k 3k >k 3k 3k >k 3k 3k >k 3k 3k >k 3k 3k >k 3k >k >k 3k >k 3k 3k >k 3k 5k >k 3k 5k >k 3k >k >k 5k >k 3k >k >k 3k 5k >k 3k >k >k 3k >k >k 5k %k %k >k *k %k k %k

*/
#include <htc.h> //PIC hardware mapping
#define _XTAL_FREQ 500000 //Used by the XC8 delay ms(x) macro
#define DOWN (2]
#define UP 1
#tdefine SWITCH PORTAbits.RA2
#tdefine LED_RIGHT 1
#tdefine LED_LEFT]
#tdefine PULL_UPS //if this is uncommented, the trace under JP5 can be
cut

//with no affect on the output
//config bits that are part-specific for the PIC16F1829
__CONFIG(FOSC_INTOSC & WDTE_OFF & PWRTE_OFF & MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_ON & CLKOUTEN_OFF &
IESO_OFF & FCMEN_OFF);
__CONFIG(WRT_OFF & PLLEN_OFF & STVREN_OFF & LVP_OFF);

YA T TR ——— LATC-----mmmmmmmmom -
* Bit#: -7---6---5---4---3---2---1---0---
*¥ LED: ------mmm------ |DS4|DS3|DS2|DS1| -
2
*/
unsigned char _direction; //a global variable

void main(void) {
//general init

OSCCON = 0b00111000; //500KHz clock speed

TRISC = 0; //all LED pins are outputs

LATC = 0; //init LEDs in OFF state

LATCbits.LATC3 = 1; //DS4 is 1lit

_direction = LED_RIGHT; //start with LEDs rotating from right to left

//setup switch (SW1)

C:\Users\Michael_Geiger\Documents\courses\16....\src\pic16\c\10 Interrupt\interrupt.c 2

TRISAbits.TRISA2 = 1; //switch as input
ANSELAbits.ANSA2 = 9; //digital switch
//by using the internal resistors, you can save cost by "4

eleminating an external pull-up/down resistor
#ifdef PULL_UPS

WPUA2 = 1; //enable the weak pull-up for the switch
nWPUEN = ©; //enable the global weak pull-up bit
#endif

//setup TIMER® as the delay

//1:256 prescaler for a delay of: (insruction-cycle * 256- «¢
counts)*prescaler = ((8uS * 256)*256) =~ 524mS
OPTION_REG = 0b00000111; //setup TIMER®O
INTCONbits.TMROIE = 1; //enable the TMRO rollover interrupt

//setup interrupt on change for the switch

INTCONbits.IOCIE = 1; //enable interrupt on change global
IOCANbits.IOCAN2 = 1; //when SW1 is pressed, enter the ISR
GIE = 1; //enable global interupts
while (1) {
continue; //can spend rest of time doing something critical here
}

¥

void interrupt ISR(void) {

if (IOCAF) { //SW1 was just pressed
IOCAF = 0, //must clear the flag in software
__delay _ms(5); //debounce by waiting and seeing if still held down
if (SWITCH == DOWN) {
_direction ~= 1; //change directions
}
}

if (INTCONbits.TOIF) {
INTCONbits.TOIF = 0;

if (_direction == LED_RIGHT) {

LATC >> = 1; //rotate right
if (STATUSbits.C == 1) //when the last LED is 1lit, restart the pattern
LATCbits.LATC3 = 1;
} else{
LATC << = 1; //rotate left
if (LATCbits.LATC4 == 1) //when the last LED is 1lit, restart the pattern
LATCbits.LATCO = 1;
}

C:\Users\Michael_Geiger\Documents\courses\16....\PICkit3_Starter_Kit\src\picl6\assy\@4 A2D\a2d.asm

3k sk 3k 3k ok 3k sk ok 3k sk >k k sk >k 3k sk >k sk sk 3k sk sk 3k sk >k 3k sk >k 3k ok 3k sk ok 3k sk sk 3k sk >k sk sk 3k 3k ok 3k sk ok k sk >k 3k sk >k 3k ok 3k 3k >k 3k sk >k k ok %k k ok %k

; Lesson 4 - "Analog to Digital”

; This shows how to read the A2D converter and display the

; High order parts on the 4 bit LED display.

; The pot on the Low Pin Count Demo board varies the voltage
; coming in on in A@.

; The A2D is referenced to the same Vdd as the device, which

; 1s nominally is 5V. The A2D returns the ratio of the voltage

; on Pin RA@ to 5V. The A2D has a resolution of 10 bits, with 1024
; representing 5V and @ representing OV.

; The top four MSbs of the ADC are mirrored onto the LEDs. Rotate the potentiometer
; to change the display.

; PIC: 16F1829
; Assembler: MPASM v5.43
; IDE: MPLABX v1.10

; Board: PICkit 3 Low Pin Count Demo Board
; Date: 6.1.2012

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k >k >k 3k 3k 3k 3k 3k 3k sk sk ok 3k >k >k >k >k 3k 3k 3k 3k sk 3k Sk ok 3k 3k >k >k >k >k 3k 3k 3k 3k 3k 3k sk ok 3k 3k >k >k >k >k 3k 3k 3k %k 3k ok sk ok k ok koK

; * See Low Pin Count Demo Board User's Guide for Lesson Information*
3k 3k 3k 3k >k 3k sk 3k 3k sk >k >k sk 3k 3k sk >k >k sk 3k 3k sk sk >k sk 3k 3k sk >k >k sk 3k 3k sk >k 3k sk 3k 3k sk >k 3k sk 3k 3k sk sk >k sk 3k 3k sk >k >k sk sk >k sk sk >k ok sk kosk sk kok

#include <pl6F1829.inc>
__CONFIG _CONFIG1, (_FOSC_INTOSC & _WDTE_OFF & _PWRTE_OFF & _MCLRE_OFF & _CP_OFF & _CPD OFF &
_BOREN_ON & _CLKOUTEN_OFF & _IESO OFF & _FCMEN_OFF);
__CONFIG _CONFIG2, (_WRT_OFF & _PLLEN _OFF & _STVREN_OFF & _LVP_OFF);

errorlevel -302 ;supress the 'not in bank®' warning
e LATC----mmmmmmmmmmm o -

; Bit#: -7---6---5---4---3---2---1---0---

5 LED: mmmmmemmmeeo- |DS4|DS3|DS2|Ds1| -

; ___
ORG © ;start of code at address ©x0000

Start:
;Setup main init

banksel OSCCON ;bankl

mov 1w b'00111000' ;set cpu clock speed

movwf OSCCON ;move contents of the working register into OSCCON

;Configure the ADC/Potentimator
;already in bankl

bsf TRISA, 4 ;Potentimator is connected to RA4....set as input
movlw b'oo001101"' ;select RA4 as source of ADC and enable the module (carefull, this
is actually AN3)
movwf ADCON®O
mov 1w b'00010000' ;left justified - Fosc/8 speed - vref is Vdd
movwf ADCON1
banksel ANSELA ;bank3
bsf ANSELA, 4 ;analog for ADC
;Configure the LEDs
banksel TRISC ;bankl
clrf TRISC ;make all of PORTC an output
banksel LATC ;select the bank where LATC is
movlw b'00001000" ;start the rotation by setting DS1 ON

movwf LATC ;write contents of the working register to the latch

C:\Users\Michael_Geiger\Documents\courses\16....\PICkit3_Starter_Kit\src\picl6\assy\@4 A2D\a2d.asm 2

MainlLoop:

nop
banksel
bsf
btfsc
goto

swapf
)
banksel
movwf
bra

end

ADCONO
ADCONO, GO
ADCONO, GO
$-1

ADRESH, w
LATC

LATC
MainLoop

;Start the ADC
s;requried ADC delay of 8uS => (1/(Fosc/4)) = (1/(500KHz/4)) = 8uS

;start the ADC

;this bit will be cleared when the conversion is complete

;keep checking the above line until GO bit is clear

;Grab Results and write to the LEDs

;Get the top 4 MSbs (remember that the ADC result is LEFT justified w

;move into the LEDs

;end code

C:

\Users\Michael_Geiger\Documents\courses\16....\docs\PICkit3_Starter_Kit\src\picl6\c\04 A2D\a2d.c

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

#i
#d

//

*
3k 3k 3k 3k 5k 3k 5k >k 3k 5k >k k sk >k 3k 5k 3k sk 5k 3k sk >k %k 5k 3k 3k sk 3k 3k >k 3k 5k >k k ok >k 3k 5k 3k 5k >k 3k 5k >k 3k 5k >k 5k 5k 3k 5k >k >k 5k >k 3k 5k >k %k >k %k %k >k k ok k

Lesson 4 - "Analog to Digital"

This shows how to read the A2D converter and display the
High order parts on the 4 bit LED display.

The pot on the Low Pin Count Demo board varies the voltage
coming in on in A@.

The A2D is referenced to the same Vdd as the device, which

is nominally is 5V. The A2D returns the ratio of the voltage

on Pin RA® to 5V. The A2D has a resolution of 10 bits, with 1023
representing 5V and © representing ov.

The top four MSbs of the ADC are mirrored onto the LEDs. Rotate the potentiometer
to change the display.

PIC: 16F1829
Compiler: XC8 v1.00
IDE: MPLABX v1.10

Board: PICkit 3 Low Pin Count Demo Board
Date: 6.1.2012

>k 3k 3k 3k 3k 3k sk sk sk 3k ok 3k ok >k >k >k >k 3k 3k 3k 3k 3k Sk ok 3k 3k >k >k >k >k 3k 3k 3k 3k sk 3k sk ok 5k 3k >k >k >k >k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k >k >k >k >k 3k 3k k sk sk ok ok ok ok

See Low Pin Count Demo Board User's Guide for Lesson Information*
3k 3k 3k 3k >k sk sk >k sk sk >k sk sk >k sk sk >k sk sk >k 3k sk >k sk sk 3k 5k sk >k sk sk >k 5k sk 3k sk sk >k ok sk 3k sk sk >k 3k sk 3k sk sk >k 3k sk 3k ok sk >k >k sk sk ok sk sk ok sk sk ok

/

nclude <htc.h> //PIC hardware mapping

efine _XTAL_FREQ 500000 //Used by the XC8 delay_ms(x) macro
config bits that are part-specific for the PIC16F1829

__ CONFIG(FOSC_INTOSC & WDTE_OFF & PWRTE_OFF & MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_ON & CLKOUTEN_OFF &

IESO_OFF & FCMEN_OFF);

_ CONFIG(WRT_OFF & PLLEN_OFF & STVREN_OFF & LVP_OFF);

* Bit#: -7---6---5---4---3---2---1---0---
* LED: =mmmmmmmmmmmoee |DS4|DS3|DS2|DS1 | -

void main(void) {

OSCCON = 0b00111000; //500KHz clock speed
TRISC = ©; //all LED pins are outputs

//setup ADC

TRISAbits.TRISA4 = 1; //Potentiamtor is connected to RA4...set as input
ANSELAbits.ANSA4 = 1; //analog
ADCONO = 0b00001101; //select RA4 as source of ADC and enable the module
(AN3)
ADCON1 = ©b000100009; //left justified - FOSC/8 speed - Vref is vdd
while (1) {

__delay_us(5); //wait for ADC charging cap to settle

GO = 1;

while (GO) continue; //wait for conversion to be finished

LATC = (ADRESH >> 4); //grab the top 4 MSbs
}

C:\Users\Michael_Geiger\Documents\courses\16....\src\picl6\assy\05 VS Rotate\vs_rotate.asm 1

3k sk 3k 3k ok 3k sk ok 3k sk >k k sk >k 3k sk >k sk sk 3k sk sk 3k sk >k 3k sk >k 3k ok 3k sk ok 3k sk sk 3k sk >k sk sk 3k 3k ok 3k sk ok k sk >k 3k sk >k 3k ok 3k 3k >k 3k sk >k k ok %k k ok %k

; Lesson 5 - "Variable Speed Rotate"

; This lesson combines all of the previous lessons to produce a variable speed rotating
; LED display that is proportional to the ADC value. The ADC value and LED rotate
; speed are inversely proportional to each other.

; Rotate the POT counterclockwise to see the LEDs shift faster.

; PIC: 16F1829
; Assembler: MPASM v5.43
; IDE: MPLABX v1.10

; Board: PICkit 3 Low Pin Count Demo Board
; Date: 6.1.2012

3k 3k 3k 3k 3k 3k 3k 3k 3k ok >k >k >k >k 3k 3k 3k 3k sk 5k sk ok 3k ok >k >k >k 3k 3k 3k 3k sk 3k Sk ok 3k 3k >k >k >k >k 3k 3k 3k 3k sk 3k sk ok 3k ok >k >k >k >k 3k 3k 3k 3k sk ok sk ok ok ok ok ok

; * See Low Pin Count Demo Board User's Guide for Lesson Information*
3k 3k 3k 3k >k 3k sk >k 3k sk >k >k sk 3k 3k sk sk >k sk 3k 3k sk sk >k sk 3k 3k sk >k >k sk k 3k sk >k 3k sk 3k 3k sk >k 3k sk 3k 3k sk sk >k sk 3k 3k sk >k >k sk sk >k sk sk >k ok sk kosk sk kok

#include <pl6F1829.inc>
__CONFIG _CONFIG1, (_FOSC_INTOSC & _WDTE_OFF & _PWRTE_OFF & _MCLRE_OFF & _CP_OFF & _CPD OFF & v
_BOREN_ON & _CLKOUTEN_OFF & _IESO OFF & _FCMEN_OFF);
__CONFIG _CONFIG2, (_WRT_OFF & _PLLEN OFF & _STVREN_OFF & _LVP_OFF);

errorlevel -302 ;supress the 'not in bank®' warning
cblock ox70 ;shared memory location that is accessible from all banks
Delayl ;Define two file registers for the delay loop in shared memory
Delay2
endc
e LATC----mmmmmmmmmmm o -
; Bit#: -7---6---5---4---3---2---1---0---
5 LED: mmmmmemmmeeo- |DS4|DS3|DS2|Ds1| -
; ___
ORG © ;start of code
Start:
;Setup main init
banksel OSCCON ;bankl
mov 1w b'00111000' ;set cpu clock speed
movwf OSCCON ;move contents of the working register into OSCCON

;Configure the ADC/Potentimator
;already in bankl

bsf TRISA, 4 ;Potentimator is connected to RA4....set as input
movl1w b'ooo001101"' ;select RA4 as source of ADC and enable the module (carefull, this ¥
is actually AN3)

movwf ADCONO

mov 1w b'00010000' ;left justified - Fosc/8 speed - vref is Vdd

movwf ADCON1

banksel ANSELA ;bank3

bsf ANSELA, 4 s;analog for ADC

;Configure the LEDs

banksel TRISC ;bankl

clrf TRISC ;make all of PORTC an output

banksel LATC ;bank2

movlw b'00001000" ;start the rotation by setting DS4 ON

movwf LATC ;write contents of the working register to the latch

MainLoop:
call A2d ;get the ADC result

;top 8 MSbs are now in the working register (Wreg)
movwf Delay2 ;move ADC result into the outer delay loop

C:\Users\Michael_Geiger\Documents\courses\16....\src\picl6\assy\05 VS Rotate\vs_rotate.asm 2

call CheckIfZero ;if ADC result is zero, load in a value of '1' or else the delay 4
loop will decrement starting at 255
call DelayLoop ;delay the next LED from turning ON
call Rotate ;rotate the LEDs
bra MainLoop ;do this forever
CheckIfZero:
movlw d'e’ ;1load wreg with '@’
xorwf Delay2, w ;XOR wreg with the ADC result and save in wreg
btfss STATUS, Z ;if the ADC result is NOT '@', then simply return to MainLoop
return s;return to MainLoop
movlw d'1’ ;ADC result IS '@'. Load delay routine with a '1' to avoid "4
decrementing a rollover value of 255
movwf Delay2 ;move it into the delay location in shared memory (RAM)
return s;return to MainLoop
A2d:
;Start the ADC
nop s;requried ADC delay of 8uS => (1/(Fosc/4)) = (1/(500KHz/4)) = 8uS
banksel ADCONO
bst ADCONO, GO ;start the ADC
btfsc ADCONO, GO ;this bit will be cleared when the conversion is complete
goto $-1 ;keep checking the above line until GO bit is clear
mov+ ADRESH, w ;Get the top 8 MSbs (remember that the ADC result is LEFT justified w
D
return
DelayLoop:
;Delay amount is determined by the value of the ADC
decfsz Delay1l, f ;will always be decrementing 255 here
goto Delayloop ;The Inner loop takes 3 instructions per loop * 255 loops (required ¢
delay)
decfsz Delay2,f ;The outer loop takes and additional 3 instructions per lap * X "4
loops (X = top 8 MSbs from ADC conversion)
goto DelaylLoop
return
Rotate:
banksel LATC ;change to Bank2
1srf LATC ;logical shift right
btfsc STATUS, C ;did the bit rotate into the carry?
bst LATC,3 ;yes, put it into bit 3.
return
end ;end code

C:\Users\Michael_Geiger\Documents\courses\16....\src\pic1l6\c\05 VS Rotate\vs_rotate.c 1
/**

>k 3k 3k 3k 3k 3k 3k sk sk 3k ok 3k ok >k >k >k >k 3k 3k 3k sk sk Sk ok ok 3k >k >k >k >k 3k 3k 3k 3k sk 3k sk ok 5k 3k >k >k >k >k 3k 3k 3k 3k sk 3k sk 3k 3k 3k >k >k >k >k 3k 3k k sk sk ok ok ok ok

* Lesson 5 - "Variable Speed Rotate"

*

* This lesson combines all of the previous lessons to produce a variable speed rotating

* LED display that is proportional to the ADC value. The ADC value and LED rotate

* speed are inversely proportional to each other.

*

* Rotate the POT counterclockwise to see the LEDs shift faster.

*

* PIC: 16F1829

* Compiler: XC8 v1.00

* IDE: MPLABX v1.10

*

* Board: PICkit 3 Low Pin Count Demo Board

* Date: 6.1.2012

*

sk ok sk ok ok sk sk ok sk ok ok sk sk ok sk sk ok sk sk sk sk sk ok sk sk ok sk sk ok sk sk sk sk sk ok sk sk sk sk >k ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk ok sk sk ok sk k k.

* See Low Pin Count Demo Board User's Guide for Lesson Information*

Sk skosk ok osk sk ok sk sk 3k sk sk 3k sk sk 3k sk sk >k sk sk >k sk sk >k ok sk >k sk sk 3k 5k sk 3k sk sk >k 3k 3k 3k sk sk >k 3k sk 3k sk sk >k 3k sk 3k 3k sk sk 3k sk sk ok sk sk ok sk sk okosk k

*/
#include <htc.h> //PIC hardware mapping
#define _XTAL_FREQ 500000 //Used by the XC8 delay_ms(x) macro

//config bits that are part-specific for the PIC16F1829

__CONFIG(FOSC_INTOSC & WDTE_OFF & PWRTE_OFF & MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_ON & CLKOUTEN_OFF & "4
IESO_OFF & FCMEN_OFF);

__CONFIG(WRT_OFF & PLLEN_OFF & STVREN_OFF & LVP_OFF);

J¥ mmmm e LATC---mmmmmmmmmmm e
* Bit#: -7---6---5---4---3---2---1---@---
* LED: mmmmmmmmmmeee-- |Ds4|Ds3|DS2|Ds1| -
K e o e e e e e e e e e e e e E e E e e E e m e m e m e mmm e ——————
*/
unsigned char adc(void); //prototype

void main(void) {
unsigned char delay;

OSCCON = 0b00111000; //500KHz clock speed

TRISC = 0; //all LED pins are outputs
LATC = ©O;

LATCbits.LATC3 = 1; //start sequence with DS4 1it

//setup ADC

TRISAbits.TRISA4 = 1; //Potentiamtor is connected to RA4...set as input
ANSELAbits.ANSA4 = 1; //analog
ADCONO = 0b00001101; //select RA4 as source of ADC and enable the module ¢
(AN3)
ADCON1 = ©b00010000; //left justified - FOSC/8 speed - Vref is Vdd
while (1) {
delay = adc(); //grab the top 8 MSbs
__delay _ms(5); //delay for AT LEAST 5ms
while (delay-- != 0)
__delay _ms(2); //decrement the 8 MSbs of the ADC and dealy 2ms for ¢
each
LATC >> = 1; //shift to the right by 1 to light up the next LED
if(STATUSbits.C) //when the last LED is 1lit, restart the pattern

LATCbits.LATC3 = 1;

C:\Users\Michael_Geiger\Documents\courses\16....\src\pic1l6\c\05 VS Rotate\vs_rotate.c

unsigned char adc(void) {
__delay_us(5);

GO = 1;
while (GO) continue; //wait for conversion to be finished

//wait for ADC charging cap to settle

return ADRESH; //grab the top 8 MSbs

	eece.3170sum17_lec13_questions_text
	eece.3170sum16_lec13_questions
	eece.3170sp16_lec30_questions
	16.317f15_lec30_questions
	16.317f15_lec29_questions
	16.317sp15_lec28_questions
	16.317f14_lec28_questions
	16.317sp14_lec30_questions
	interrupt_asm
	interrupt_c

	eece.3170sp16_lec31_questions
	16.317f15_lec31_questions
	a2d_asm
	a2d_c
	vs_rotate_asm
	vs_rotate_c

