Summer 2017

Lecture 12: Key Questions June 15, 2017

1. Describe the assembler directives that can be used in the MPLAB IDE.

2. Explain the operation of the following assembly program, which lights a single LED:

Start:

banksel	TRISC	;select bank1
bcf	TRISC,0	;make CO an output
banksel	LATC	;select bank2
clrf	LATC	; initialize the
		; LATCH by
		; turning off
		; everything
bsf	LATC,0	;turn on LED CO (DS1)
goto	\$;sit here forever!

end

3. Explain the equivalent program in C, shown below:

```
void main(void) {
    TRISCbits.TRISC0 = 0; // Pin 0 = output
    LATC = 0; //clear all pins to 0
    LATCbits.LATC0 = 1; // turn ON LED
    while(1) continue;
}
```

4. Describe how to compile and run code in MPLAB. Explain the differences between running code in the simulator and on the development board. Also, discuss how to use the in-circuit debugger to access code on the chip as it runs.

5. Describe the following assembly program, which blinks a single LED:

cblock 0x70 Delay1 Delay2 endc	;shared memory acc ;Two registers fo	cessible from all banks or delay loop in shared mem
ORG 0		
Start:		
banksel	OSCCON	;bank1
movlw movwf	b'00111000' OSCCON	;set cpu speed of 500KHz ;OSCCON configures : internal clock
bcf	TRISC 0	:Pin $CO = output for DS1$
banksel	LATC	:bank2
clrf		•Turn off all of the LEDs
MainLoop:		
bsf	LATC, 0	;turn on DS1
OndelavLoop:		
decfsz	Delav1,f	;Waste time.
bra	OndelayLoop	;Inner loop takes 3 inst
	; r	per loop * 256 loops =
	-	; 768 instructions
decfsz	Delay2,f	;The outer loop takes an
	-	; additional 3
		; instructions per loop
		; * 256 loops
bra	OndelayLoop	;(768+3) * 256 = 197376
		; instructions /
		; 125K instructions per
		; second = 1.579 sec
bcf	LATC,0	;Turn off LED CO
OffDelayLoop:		
decfsz	Delay1,f ;sa	ame delay as above
bra	OffDelayLoop	
decfsz	Delay2,f	
bra	OffDelayLoop	
bra	MainLoop	;Do it again
end		

1. Extra space to describe first program.

6. Describe the equivalent program in C, shown below:

```
void main(void) {
    unsigned int delay; // 16 bit variable
    OSCCON = 0b00111000; //500KHz clock speed
    TRISCbits.TRISC0 = 0; //using pin as output
    delay = 11250;
    while (1) {
        //each instruction is 8us (1/(500KHz/4))
        while(delay-- != 0)continue;
        LATCbits.LATC0 ^= 1; //toggle LED
        delay = 11250; //reset delay counter
     }
}
```


7. Describe the basic functionality of the PIC16F1829 clock generation module below:

8. Explain the operation of the programs used to rotate the LEDs using an instruction countbased delay loop (rotate.asm and rotate.c).

9. Explain the features of a typical microcontroller timer module.

10. Explain the operation of the programs used to rotate the LEDs using a timer-based delay loop (timer0.asm and timer0.c).