

EECE.3170: Microprocessor Systems Design I
Summer 2017

Homework 5 Solution

For each of the following complex operations, write a sequence of PIC 16F1829 instructions
that performs an equivalent operation. Assume that X, Y, and Z are 16-bit values split into
individual bytes as shown in the following cblock directive, which defines two additional
variables you can use:

cblock 0x70
 XH, XL ; High and low bytes of X
 YH, YL ; High and low bytes of Y
 ZH, ZL ; High and low bytes of Z
 TEMP ; Temporary byte, if needed
endc

a. Perform the 16-bit addition: X = Y + Z. Do not change Y or Z when performing this
operation.

Solution: First, we’ll look at the inefficient method, which would work on any PIC
microcontroller:
 movf YL, W ; Copy YL to XL
 movwf XL
 movf YH, W ; Copy YH to XH
 movwf XH
 movf ZL, W ; Add low bytes
 addwf XL, F
 btfsc STATUS, C ; Account for carry
 incf XH, F
 movf ZH, W ; Add high bytes
 addwf XH, F
We can do this operation more efficiently by using the addwfc instruction found on
microcontrollers like the PIC16F1829, which allows you to get rid of the extra instructions that
“account for the carry:”
 movf YL, W ; Copy YL to XL
 movwf XL
 movf YH, W ; Copy YH to XH
 movwf XH
 movf ZL, W ; Add low bytes
 addwf XL, F
 movf ZH, W ; Add high bytes, including carry from low byte
 addwfc XH, F

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Summer 2017 Homework 5 Solution

 2

b. Perform the 16-bit subtraction: X = Y – Z. Do not change Y or Z when performing this
operation.

Solution: This operation is very similar to 16-bit addition, although you have to be more careful
about what register is moved into the working register before the subtract instructions. First, the
inefficient version—remember that C = 0 if a borrow occurs:

 movf YL, W ; Copy YL to XL
 movwf XL
 movf YH, W ; Copy YH to XH
 movwf XH
 movf ZL, W ; Subtract low bytes
 subwf XL, F
 btfss STATUS, C ; Account for borrow (C = 0 à “borrow” = 1)
 decf XH, F
 movf ZH, W ; Subtract high bytes
 subwf XH, F
And the more efficient version that uses the “subtract with borrow” subwfb instruction:

 movf YL, W ; Copy YL to XL
 movwf XL
 movf YH, W ; Copy YH to XH
 movwf XH
 movf ZL, W ; Subtract low bytes
 subwf XL, F
 movf ZH, W ; Subtract high bytes, taking borrow into
 subwfb XH, F ; account

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Summer 2017 Homework 5 Solution

 3

c. Perform a 16-bit arithmetic right shift: X = Y >> ZL. (Note that, because the shift amount is
no greater than 15, a single byte is sufficient to hold that value.) Do not change Y or ZL
when performing this operation.

Solution: Similarly to the last two problems, the first thing to be done is move the value to be
shifted into the destination registers XH and XL. Once that’s done, set up a loop with ZL
iterations (we’ll have to copy that value to another register so it’s not changed) and do the shift.
Remember, while the shift for the high byte can be an arithmetic shift, we need a rotate
instruction to change the low byte so that the bit shifting between bytes is correctly accounted
for.

movf YL, W ; Copy YL to XL
 movwf XL
 movf YH, W ; Copy YH to XH
 movwf XH
 movf ZL, W ; Copy ZL to TEMP
 movwf TEMP
L: asrf XH, F ; Shift upper byte (C = bit to be shifted into XL)
 rrf XL, F ; Shift lower byte
 decfsz TEMP, F ; Decrement loop counter and return to start
 goto L ; of loop if there are more iterations.

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Summer 2017 Homework 5 Solution

 4

d. Given an 8-bit variable, YL, perform the multiplication:
YL = YL * 10

Hint: Note that multiplication by a constant amount can be broken into a series of shift and add
operations. For example, in general:

• X * 2 can be implemented by shifting X to the left by 1 (X << 1)

• X * 5 can be implemented as (X * 4) + X = (X << 2) + X

Solution: Recognize that YL * 10 = (YL * 8) + (YL * 2) = (YL << 3) + YL + YL
 movf YL, W ; Copy original value of YL into TEMP
 movwf TEMP
 movlw 3 ; Set W = 3—use as loop counter for left shift
L: lslf YL, F
 addlw -1 ; Decrement loop counter
 btfss STATUS, Z ; and exit once it reaches 0
 goto L
 movf TEMP, W ; W = TEMP = original value of YL
 ; At this point, YL = (original YL) << 3

; = (original YL) * 8
 addwf YL, F ; YL = (original YL) * 9
 addwf YL, F ; YL = (original YL) * 10

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Summer 2017 Homework 5 Solution

 5

e. Given two 8-bit variables stored in XL and YL, copy the value of bit position YL within
variable XL into the carry flag. For example:

• If XL = 0x03 and YL = 0x00, set C to the value of bit 0 within XL.
o Since XL = 0x03 = 0000 00112, C = 1

• If XL = 0xC2 and YL = 0x04, set C to the value of bit 4 within XL.
o Since XL = 0xC2 = 1100 00112, C = 0

Note that:

• This operation is very similar to the bit test (BT) instruction in the x86 architecture.

• Since YL is not a constant, you cannot use the value of YL directly in any of the PIC bit
test instructions (for example, btfsc XL, YL is not a valid instruction).

• Your code should not modify either XL or YL.

Solution

movlw 0x01 ; TEMP will hold bit mask used
movwf TEMP ; to isolate bit YL within XL
movf YL, W ; Copy B to W—determines # of times to shift temp

L: btfsc STATUS, Z ; Once W hits 0, end loop—bit mask is set
 goto L2 ; Must test this first for case where YL == 0
 rlf TEMP, F ; TEMP will eventually be 1 << YL
 addlw -1 ; Decrement W
 goto L
L2: bcf STATUS, C ; Clear C

movf TEMP, W ; AND temp with XL to mask out all but bit YL
andwf XL, W
btfss STATUS, Z ; If result is non-zero, set C bit; otherwise,

 bsf STATUS, C ; leave as 0

