
EECE.3170: Microprocessor Systems Design I
Summer 2017

Homework 4 Solution

1. (40 points) Write the following subroutine in x86 assembly:

 int f(int v1, int v2, int v3) {
 int x = v1 + v2;
 return (x + v3) * (x – v3);
 }

Recall that:

• Subroutine arguments are passed on the stack, and can be accessed within the body of
the subroutine starting at address EBP+8.

• At the start of each subroutine:
i. Save EBP on the stack

ii. Copy the current value of the stack pointer (ESP) to EBP
iii. Create space within the stack for each local variable by subtracting the appropriate

value from ESP. For example, if your function uses four integer local variables, each
of which contains four bytes, subtract 16 from ESP. Local variables can then be
accessed starting at the address EBP-4.

iv. Save any registers the function uses other than EAX, ECX, and EDX.

• A subroutine’s return value is typically stored in EAX.
See Lectures 14 and 16-18 for more details on subroutines, the x86 architecture, and the
conversion from high-level concepts to low-level assembly.

Solution: Solution is shown on the next page; note that many different solutions are possible.
The key points are:

• Setting up the stack frame appropriately (save base pointer; point base pointer to
appropriate location; create space for local variable(s); save any overwritten registers
except eax).

• Adding v1 + v2 while appropriately accessing different memory locations (only one
memory operand per instruction; accessing arguments at right addresses relative to ebp)

• Computing return value while appropriately accessing different memory locations
• “Cleaning up” stack frame (restoring saved registers; clearing space for local variable(s);

restoring base pointer)

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Summer 2017 Homework 4 Solution

 2

f PROC ; Start of function f
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp

 sub esp, 4 ; Create space on the
 ; stack for x

 push ebx ; Save ebx on the stack
 push edx ; Save edx on the stack

 mov ebx, DWORD PTR 8[ebp] ; ebx = v1

 add ebx, DWORD PTR 12[ebp] ; ebx = v1 + v2

 mov DWORD PTR -4[ebp], ebx ; x = ebx = v1 + v2

 mov eax, ebx ; eax = ebx = x

 add eax, DWORD PTR 16[ebp] ; eax = eax + v3 = x + v3

 sub ebx, DWORD PTR 16[ebp] ; ebx = ebx – v3 = x – v3

 imul ebx ; (edx,eax) = eax * ebx
 ; = (x + v3) * (x – v3)

 pop edx ; Restore edx
 pop ebx ; Restore ebx

 mov esp, ebp ; Clear x
 pop ebp ; Restore ebp

 ret ; Return from subroutine
f ENDP

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Summer 2017 Homework 4 Solution

 3

2. (60 points) Write the following subroutine in x86 assembly:

int fib(int n)

Given a single integer argument, n, return the nth value of the Fibonacci sequence—a sequence
in which each value is the sum of the previous two values. The first 15 values are shown below—
note that the first value is returned if n is 0, not 1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
fib(n) 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Solution: How you implement the low-level code for this version of the Fibonacci function
depends on the algorithm you use. What follows is both C code and assembly for the algorithm
implemented either with or without recursion.
int fib(int n) { // FIBONACCI WITHOUT RECURSION
 int i; // Loop index
 int first, sec; // Two previous Fibonacci values
 int cur; // Value from current iteration

 // For n == 0 or n == 1, fib(n) == n
 if (n <= 1)
 return n;

 // Use loop to calculate fib(n)--at each step,
 // current value is sum of previous two values
 else {
 first = 0;
 sec = 1;
 for (i = 2; i <= n; i++) {
 cur = first + sec;
 first = sec;
 sec = cur;
 }
 return cur;
 }

}

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Summer 2017 Homework 4 Solution

 4

fib PROC ; Start of subroutine
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp
 sub esp, 8 ; Create space for first,
 ; sec (cur, if needed,
 ; will be in eax)
 push ebx ; Save ebx and ecx (both
 push ecx ; (overwritten in fn)

; CODE FOR: if (n <= 1) return n
 cmp DWORD PTR 8[ebp], 1 ; Compare n to 1
 jg L1 ; If n isn’t <= 1, jump
 ; to else case
 mov eax, DWORD PTR 8[ebp] ; eax = n (eax holds
 ; return value)
 jmp L3 ; Jump to end of function

; CODE FOR: first = 0; sec = 1
L1:
 mov DWORD PTR -4[ebp], 0 ; first = 0
 mov DWORD PTR -8[ebp], 1 ; sec = 1

; CODE FOR: loop initialization
; Note that the loop will execute n – 1 iterations, so we
; can initialize ECX to n - 1 and use loop instructions
 mov ecx, DWORD PTR 8[ebp] ; cx = n
 dec ecx ; cx = cx – 1 = n – 1

; CODE FOR: cur = first + sec; first = sec; sec = cur
L2:
 mov eax, DWORD PTR -4[ebp] ; cur = eax = first
 add eax, DWORD PTR -8[ebp] ; cur = first + sec
 mov ebx, DWORD PTR -8[ebp] ; ebx = sec
 mov DWORD PTR -4[ebp], ebx ; first = ebx = sec
 mov DWORD PTR -8[ebp], eax ; sec = eax = cur

; CODE FOR: decrement loop counter & go to start of loop
 loop L2

; CLEANUP (NOTE: No additional code needed for return cur
; in else case, since cur is already stored in eax)
L3:
 pop ecx ; Restore ecx
 pop ebx ; Restore ebx
 mov esp, ebp ; Clear first, sec
 pop ebp ; Restore ebp
 ret ; Return from subroutine
fib ENDP

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Summer 2017 Homework 4 Solution

 5

int fib(int n) { // FIBONACCI WITH RECURSION

 // For n == 0 or n == 1, fib(n) == n
 if (n <= 1) return n;

 // Otherwise, value is sum of two previous steps
 else return fib(n-1) + fib(n-2);
}

fib PROC ; Start of subroutine
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp
 push ebx ; Save ebx (overwritten
 ; in function)

; CODE FOR: if (n <= 1) return n
 cmp DWORD PTR 8[ebp], 1 ; Compare n to 1
 jg L1 ; If n isn’t <= 1, jump
 ; to else case
 mov eax, DWORD PTR 8[ebp] ; eax = n (eax holds
 ; return value)
 jmp L2 ; Jump to end of function

; CODE FOR: calling fib(n-1)
L1:
 mov ebx, DWORD PTR 8[ebp] ; Copy n to ebx
 dec ebx ; ebx = n – 1
 push ebx ; Push n – 1 to pass it
 ; as argument
 call fib ; Call fib(n-1)
 ; Return value in eax

; CODE FOR: calling fib(n-2)
; NOTE: We can take advantage of the fact that n-1 is still
; on the stack--decrement that value, and we’ll have the
; value n-2 to pass to our next function call
 mov ebx, eax ; ebx = eax = fib(n-1)
 dec DWORD PTR [esp] ; Value at top of stack =
 ; (n-1) – 1 = n-2
 call fib ; Call fib(n-2)
 ; Return value in eax

; CODE FOR: return fib(n-1) + fib(n-2)
 add eax, ebx ; eax = fib(n-1)+fib(n-2)

; CLEANUP
L2:
 add esp, 4 ; Clear argument passed to
 ; fib(n-2)
 pop ebx ; Restore ebx
 pop ebp ; Restore ebp
 ret ; Return from subroutine
fib ENDP

