EECE.3170: Microprocessor Systems Design I

Summer 2017

Homework 2 Solution

1. (70 points) Assume the state of an $x 86$ processor's registers and memory are:

EAX: OxEECE3170
EBX: 0x00000001
ECX: 0x00000002
EDX: 0x00000004
ESI: 0x00020100
EDI: 0×00020110

	Address		Lo	Hi	
Ox20100	10	00	08	00	
0×20104	10	10	$F F$	$F F$	
0×20108	08	00	19	91	
$0 \times 2010 C$	20	40	60	80	
0×20110	02	00	$A B$	$0 F$	
0×20114	30	99	11	55	
0×20118	40	$A A$	$7 C$	$E E$	
$0 \times 2011 C$	$F F$	$B B$	42	$D 2$	
0×20120	30	$C C$	30	90	

What is the result of each of the instructions listed below? Assume that the instructions execute in sequence-in other words, the result of each instruction may depend on the results of earlier instructions. Correctly evaluating each instruction will earn you 7 points.
Note that you may assume any constant values shown using less than 32 bits are zero-extended to 32 bits if necessary (for example, $0 x 000 F=0 x 0000000 F$).

MOV DL, OxFE
Solution: $\mathrm{DL}=\mathbf{0 x F E}$

MOV DH, AL
Solution: $\mathrm{DH}=\mathrm{AL}=\mathbf{0 x} 70(\mathrm{EDX}$ now $=0 \times 000070 \mathrm{FE})$

MOVSX BX, BYTE PTR [ESI $+0 x 000 F]$
Solution: $\mathrm{BX}=$ sign-extended byte at address ESI $+0 \mathrm{x} 000 \mathrm{~F}=0 \mathrm{x} 00020100+0 \mathrm{x} 000 \mathrm{~F}=0 \times 0002010 \mathrm{~F}$

$$
\rightarrow \mathrm{BX}=0 \times 80 \text { sign-extended }=\mathbf{0} \mathbf{x F} \mathbf{F 8 0}
$$

MOV [EDI $+E C X], E B X$
Solution: Double-word at address EDI + ECX $=$ EBX

$$
\begin{aligned}
& \text { EDI }+ \text { ECX }=0 \times 00020110+0 \times 00000002=0 \times 00020112 \\
& \rightarrow(0 \times 20112)=\text { EBX }=\mathbf{0 x 0 0 0 0 F F 8 0}(\text { bytes ordered as } 0 \times 80,0 \times \mathrm{FF}, 0 \times 00,0 \times 00)
\end{aligned}
$$

MOV [ESI+4*ECX], AX

Solution: Word at address ESI $+4 *$ ECX $=\mathrm{AX}$

$$
\mathrm{ESI}+4 * \mathrm{ECX}=0 \times 20100+4 * 2=0 \times 20108
$$

$\rightarrow(0 \times 20108)=\mathbf{0 x 3 1 7 0}($ bytes ordered as $0 \times 70,0 \times 31)$

XCHG CL, [ESI]
Solution: Swap byte values in CL, address $0 \times 20110 \rightarrow C L=\mathbf{0 x 1 0},(0 \times 20110)=\mathbf{0 x 0 2}$

MOVZX EAX, WORD PTR [EDI $+E C X]$
Solution: EAX $=$ zero-extended word at address EDI + ECX $=0 \times 20110+0 \times 00000010=0 \times 20120$
$\rightarrow \mathrm{EAX}=\mathbf{0 x 0 0 0 0} \mathbf{C C 3 0}$ (original word underlined)

MOV DX, [EDI $+0 x F F F F F F F A]$
Solution: DX = word at address EDI $+0 \times$ FFFFFFFFA $=0 \times 20110+(-6)=0 \times 2010 \mathrm{~A}$
$\rightarrow \mathrm{DX}=0 \times 9119$

LEA ECX, [ESI $+E B X+0 x 0017]$
Solution: $\mathrm{ECX}=\mathrm{ESI}+\mathrm{EBX}+0 \mathrm{x} 0017 \mathrm{~h}=0 \times 20100+0 \times 0000 \mathrm{FF} 80+0 \times 0017 \mathrm{~h}=\mathbf{0 x 3 0 0 9 7}$

MOVSX EBX, BYTE PTR [ESI+4]
Solution: $\mathrm{EBX}=$ sign-extended byte at address $0 \times 20104 \mathrm{~h}=\mathbf{0 x 0 0 0 0 0 0 1 0}$ (original byte underlined)
2. (80 points) Assume the initial state of an $x 86$ processor's registers, memory, and carry flag are:

EAX: 0x00003170
EBX: 0x9876DCBA
ECX: 0x00001995
EDX: 0xAC921E14
ESI: 0x00008440

Address	Lo		Hi	
0x8440	FF	03	99	87
0x8444	08	09	F6	BB
0×8448	78	15	00	00

CF: 0

What is the result of each of the instructions listed below? Assume that the instructions execute in sequence-in other words, the result of each instruction may depend on the results of earlier instructions. Correctly evaluating each instruction will earn you 8 points.

Note that you may assume any constant values shown using less than 32 bits are zero-extended to 32 bits if necessary (for example, 0x000F $=0 x 0000000 F$).
$A D D \quad A X, B X$
Solution: $\mathrm{AX}=\mathrm{AX}+\mathrm{BX}=0 \times 3170+0 \times \mathrm{DCBA}=\mathbf{0 x 0 E 2 A h}, \mathbf{C F}=\mathbf{1}$

ADC EAX, ECX
Solution: $\mathrm{EAX}=\mathrm{EAX}+\mathrm{ECX}+\mathrm{CF}=0 \mathrm{x} 00000 \mathrm{E} 2 \mathrm{~A}+0 \mathrm{x} 00001995+1=\mathbf{0 x 0 0 0 0 2 7} \mathbf{C 0}, \mathbf{C F}=\mathbf{0}$

INC WORD PTR [ESI]
Solution: Add 1 to word at address ESI $=0 \times 00008440$
\rightarrow Word @ $0 \times 8440=0 \times 03 \mathrm{FF}+1=\mathbf{0 x} 0400$ (byte @ $0 \times 8440=0 \times 00$,
byte @ $0 \times 8441=0 x 04$)

MUL BYTE PTR [ESI+4]
Solution: $\mathrm{AX}=\mathrm{AL}$ * unsigned byte @ (ESI +4)
\rightarrow Address $=$ ESI $+4=0 \times 8440+4=0 \times 8444$; byte $@ 0 \times 8444=0 \times 08$
$\rightarrow \mathrm{AX}=0 \mathrm{xC} 0 * 0 \times 08=192 * 8=1536=\mathbf{0 x} 0600$

SUB $A X,[E S I+8]$
Solution: AX = AX - word @ ESI +8
\rightarrow Address $=$ ESI $+8=0 \times 8440+8=0 \times 8448$; word @ $0 \times 8448=0 \times 1578$
$\rightarrow \mathrm{AX}=0 \times 0600-0 \times 1578=\mathbf{0 x F 0 8 8}, \mathbf{C F}=\mathbf{1}$ (since borrow out of MSB required)

DEC AH
Solution: AH = AH - $1=0 \times \mathrm{xF} 0-1=\mathbf{0 x E F h}$

IMUL AH
Solution: $\mathrm{AX}=\mathrm{AL} * \mathrm{AH}$ (signed multiplication) $=0 \times 88 * 0 \mathrm{xEF}=-120 *-17=2040=\mathbf{0 x} \mathbf{0 7 F 8}$

IDIV DL
Solution: AL = AX / DL (signed division) = 0x07F8 / 0x14 = 2040 / 20 = 102 = 0x66 $\mathrm{AH}=\mathrm{AX} \% \mathrm{DL}($ remainder $)=2040 \% 20=\mathbf{0 x 0 0}$

DIV $\quad D H$
Solution: AL = AX / DH (unsigned division) $=0 \times 0066 / 0 \times 1 E=102 / 30=\mathbf{0 x 0 3}$ $\mathrm{AH}=\mathrm{AX} \% \mathrm{DH}($ remainder $)=102 \% 30=12=\mathbf{0 x} 0 \mathbf{C}$

NEG AH
Solution: $\mathrm{AH}=-\mathrm{AH}=-0 \times 0 \mathrm{C}=-\left(00001100_{2}\right)=\left(11110011_{2}+1=11110100_{2}=\mathbf{0 x F 4 h}\right.$

