EECE.3170: Microprocessor Systems Design I

Summer 2017

Homework 1 Solution

1. (50 points) Given each of the binary or hexadecimal number below, determine what the decimal value is if the number is (i) an unsigned integer, and (ii) a signed integer. Note that, in some cases, your answers for both will be the same.
a. 01011000_{2}

Since MSB $=0$, value is same whether unsigned or signed-figure out the significance of each position in which a bit = 1 , and sum those values together.

$$
01011000_{2}=64+16+8=\mathbf{8 8}
$$

b. 11001011_{2}

For an unsigned integer, we use the same method as in part (a)

$$
11001011_{2}=128+64+8+2+1=\mathbf{2 0 3}
$$

For a signed integer, recognize that this value is negative; to find its magnitude, take the two's complement:

$$
-11001011_{2}=00110100_{2}+1=00110101_{2}=32+16+4+1=53
$$

Therefore, $11001011_{2}=\mathbf{- 5 3}$ when treated as a signed integer.
c. 0x93-recall that the leading 0x signifies the following value is in hexadecimal

For an unsigned integer, we don't really need to convert to binary; if you want to do so, $0 \times 93=$ 10010011_{2}. However, we can also just convert directly to decimal:

$$
93_{16}=(9 \times 16)+(3 \times 1)=\mathbf{1 4 7}
$$

As a signed integer, note that this value is negative, since its MSB $=1$. To find the magnitude, once again take the two's complement:

$$
-10010011_{2}=01101100_{2}+1=01101101_{2}=64+32+8+4+1=109
$$

Therefore, as a signed integer, $0 \times 93=\mathbf{- 1 0 9}$.
d. $0 \times 51 A 3$

Since the most significant bit of this number is $0\left(0 \times 51 \mathrm{~A} 3=0101000110100011_{2}\right)$, it has the same value whether it is treated as a signed or unsigned integer. That value is:

$$
\begin{aligned}
& \left(5 \times 16^{3}\right)+\left(1 \times 16^{2}\right)+\left(10 \times 16^{1}\right)+\left(3 \times 16^{0}\right)= \\
& (5 \times 4096)+(1 \times 256)+(10 \times 16)+(3 \times 1)=20480+256+160+3=\mathbf{2 0 8 9 9}
\end{aligned}
$$

e. $0 x D A B 0$

This number has different values when treated as signed or unsigned, since the MSB is 1 $\left(0 x D A B 0=1101101010110000_{2}\right)$. As an unsigned integer:

$$
\begin{aligned}
& \left(13 \times 16^{3}\right)+\left(10 \times 16^{2}\right)+\left(11 \times 16^{1}\right)+\left(0 \times 16^{0}\right)= \\
& (13 \times 4096)+(10 \times 256)+(11 \times 16)+(0 \times 1)= \\
& 53248+2560+176=\mathbf{5 5 9 8 4}
\end{aligned}
$$

As a signed integer, the magnitude is:

$$
-0 x D A B 0 h=-1101101010110000_{2}=0010010101010000_{2}=0 \times 2550
$$

I've shown the conversion back into hexadecimal because it might be slightly easier to figure out the decimal value of the magnitude using what we already know about converting a 16 -bit value from hex to decimal:

$$
\begin{aligned}
& \left(2 \times 16^{3}\right)+\left(5 \times 16^{2}\right)+\left(5 \times 16^{1}\right)+\left(0 \times 16^{0}\right)= \\
& (2 \times 4096)+(5 \times 256)+(5 \times 16)+0=8192+1280+80=9552
\end{aligned}
$$

Therefore, $0 x \mathrm{xAB} 0=\mathbf{- 9 5 5 2}$ as a signed integer.
2. (50 points) Assume the contents of memory are shown below. All values are in hexadecimal. The table shows four bytes per line; the given address is the starting address of each line.

Each block in the table contains a single byte, with the low and high bytes per line indicated as shown. Each byte has its own address, so the byte at address $0 x 92220$ is 0x89, address 0x92221 is $0 x A E$, address $0 x 92222$ is $0 x E 1$, and address $0 x 92223$ is $0 x F 4$.

You should assume all multi-byte values are stored in little-endian format.

Address	Lo		Hi	
Ox92220	89	AE	E1	F4
0x92224	15	$B A$	FF	70
0x92228	31	CE	EE	23
0x9222C	19	78	01	06
0x92230	15	12	24	07
0x92234	B3	A2	99	DA
0x92238	44	20	C5	B6

For each address and amount of data listed, answer the following:

- What data are stored at that address?
- Would an access to the given amount of data at that address be aligned?
- If the data represents a signed integer, what is the sign of that value?

For example, given "Address: 0x92220, Data size: word," your response would be that the word at 0x92220 is 0xAE89, the access is aligned, and the data represents a negative integer.

Note: The key points to remember for this problem are:

- Little-endian data are stored with the least significant byte at the lowest address.
- An access is aligned if the address is divisible by the number of bytes being accessed.
- In signed formats, the integer is positive if the most significant bit is 0 and negative if that bit is 1 .
a. Address: 0x9222C, Data size: word

The word at this address is 0×7819, the access is aligned (since $0 \times 9222 \mathrm{C}$ is divisible by 2), and the data represents a positive integer, since its most significant bit is 0 .
b. Address: 0x92235, Data size: byte

The byte at this address is $0 \times \mathbf{A 2}$, the access is aligned (since every address is divisible by 1), and the data represents a negative integer, since its most significant bit is 1 .
c. Address: 0x9222B, Data size: double word

The double word at this address is 0×01781923, the access is not aligned (since $0 x 9222 \mathrm{~B}$ is not divisible by 4), and the data represents a positive integer, since its most significant bit is 0 .
(Note: in the diagram above, I've tried to color-code the answers, but this double-word contains the word accessed in part (a), so those two bytes are shown in red and the first and last bytes of the double-word are shown in green.)
d. Address: 0x92236, Data size: word

The word at this address is 0xDA99, the access is aligned (since 0×92236 is divisible by 2), and the data represents a negative integer, since its most significant bit is 1 .
e. Address: 0x92227, Data size: double word

The double word at this address is $0 \times$ EECE3170, the access is not aligned (since 0×92227 is not divisible by 4), and the data represents a negative integer, since its most significant bit is 1 .

