
 1

EECE.3170: Microprocessor Systems Design I
Summer 2016

Lecture 13: Exam Practice Problems
June 20, 2016

1. Complete this ISR so that if a timer interrupt has occurred, the LEDs will be updated to show
the next value in the pattern stored in the array st[], going back to the first value (0b0001)
after showing the eighth (0b1001). If a switch interrupt has occurred, clear all LEDs and
reset to the initial state. Assume the LEDs are wired to Port C, as on the development board
used in HW 6, and that “SWITCH” and “DOWN” are appropriately defined.

Assume the use of the following global variables—st[] holds the list of values to be displayed
on the LEDs, while i is the current index into that array. Assume i initially holds the value 0:
unsigned char st[8] = {0b0001, 0b0010, 0b0100, 0b0101,

 0b1010, 0b0100, 0b1000, 0b1001};
unsigned char i;

void interrupt ISR(void) {

 if (IOCAF) { // SW1 was pressed

 // Clear flag in software

 __delay_ms(5); // Delay for debouncing
 if (SWITCH == DOWN) { // If switch still pressed

 // clear LEDs

 i = 0; // and reset i

 }
 }

 if (INTCONbits.T0IF) { // Timer 0 interrupt

 // Clear flag in software

 // Update LEDs to show
 // current st[] value

 // Increment i

 if () // If i exceeds max index

 i = 0; // reset i
 }
}

EECE.3170: Microprocessor Systems Design I M. Geiger
Summer 2016 Lecture 13: Exam Practice Problems

 2

2. This function performs an analog to digital conversion and uses the least significant bits of
the result, which are stored in ADRESL, to determine the program operation as follows:

• If the lowest two bits are 01, toggle the lowest LED, which is wired to the least
significant bit (bit 0) of Port C.

o That bit can be accessed either through the PORTC or LATC register; to access bit
0, use PORTCbits.PORTC0 or LATCbits.LATC0

• If the lowest two bits are 10, toggle the second LED, which is wired to bit 1 of Port C.
• If the lowest two bits are 11, turn both the first and second LEDs on.

Assume the ADC is configured to produce a right-justified result, so the lowest bits of ADRESL
are the least significant bits of the conversion result.

void read_adc(void) {
 unsigned char lobits; // Variable to hold lowest 2

// bits of ADC result
 __delay_us(5); // Wait for ADC cap to settle

 // Start conversion

 while (GO) continue; // Wait until conversion done

 // lobits = lowest two bits

// of ADC result

 if (lobits == 0b01) { // In this case, toggle
 // lowest LED (FILL IN

// SPACE TO LEFT WITH
// APPROPRIATE CODE, WHICH
// MAY USE MULTIPLE LINES)

 }
 else if (lobits == 0b10) { // In this case, toggle
 // second LED (FILL IN

// SPACE TO LEFT WITH
// APPROPRIATE CODE, WHICH
// MAY USE MULTIPLE LINES)

 }
 else if (lobits == 0b11) { // In this case, turn first &
 // second LEDs on (FILL IN

// SPACE TO LEFT WITH
// APPROPRIATE CODE, WHICH
// MAY USE MULTIPLE LINES)

 }
}

