16.317: Microprocessor Systems Design I

Summer 2016

Homework 5

Due 1:00 PM, Monday, 6/20/16

Notes:

- While typed submissions are preferred, handwritten submissions are acceptable.
- All solutions must be legible and contained in one file. Archive files are not acceptable.
- Electronic submissions should be e-mailed to Dr. Geiger at Michael Geiger@uml.edu. Please include your name as part of your filename (for example, mgeiger_hw6.pdf).
- This assignment is worth a total of 100 points.

For each of the following complex operations, write a sequence of PIC 16F1829 instructions that performs an equivalent operation. Assume that X, Y, and Z are 16 -bit values split into individual bytes as shown in the following cblock directive, which defines two additional variables you can use:

```
cblock 0x70
    XH, XL ; High and low bytes of X
    YH, YL ; High and low bytes of Y
    ZH, ZL ; High and low bytes of Z
    TEMP ; Temporary byte, if needed
    COUNT ; Loop counter, if needed
endc
```

Each question on this assignment is worth 20 points.

1. Perform the 16 -bit addition: $\mathrm{X}=\mathrm{Y}+\mathrm{Z}$. Do not change Y or Z when performing this operation.
2. Perform the 16 -bit subtraction: $X=Y-Z$. Do not change Y or Z when performing this operation.
3. Perform a 16 -bit arithmetic right shift: $\mathrm{X}=\mathrm{Y} \gg \mathrm{ZL}$. (Note that, because the shift amount is no greater than 15 , a single byte is sufficient to hold that value.) Do not change Y or ZL when performing this operation.
4. Given an 8-bit variable, YL, perform the multiplication:

$$
\mathrm{YL}=\mathrm{YL} * 10
$$

Hint: Note that multiplication by a constant amount can be broken into a series of shift and add operations. For example, in general:

- $\quad \mathrm{X} * 2$ can be implemented by shifting X to the left by $1(\mathrm{X} \ll 1)$
- $\mathrm{X} * 5$ can be implemented as $(\mathrm{X} * 4)+\mathrm{X}=(\mathrm{X} \ll 2)+\mathrm{X}$

5. Given two 8-bit variables stored in XL and YL, copy the value of bit position YL within variable XL into the carry flag. For example:

- If $\mathrm{XL}=0 \times 03$ and $\mathrm{YL}=0 \times 00$, set C to the value of bit 0 within XL.
- Since XL $=0 \times 03=0000001 \underline{1}_{2}, \mathrm{C}=1$
- If $\mathrm{XL}=0 \mathrm{xC} 2$ and $\mathrm{YL}=0 \mathrm{x} 04$, set C to the value of bit 4 within XL .
- Since $\mathrm{XL}=0 \mathrm{xC} 2=11000011_{2}, \mathrm{C}=0$

Note that:

- This operation is very similar to the bit test (BT) instruction in the x86 architecture.
- Since YL is not a constant, you cannot use the value of YL directly in any of the PIC bit test instructions (for example, btfsc XL, YL is not a valid instruction).
- Your code should not modify either XL or YL.

