EECE.3170: Microprocessor Systems Design I

Summer 2016
Homework 2 Solution

1. Assume the state of an $x 86$ processor's registers and memory are:

EAX: EECE3170h
EBX: 00000001h
ECX: 00000002h
EDX: 00000004h
ESI: 00020100h
EDI: 00020110h

Address	Lo		Hi	
20100h	10	00	08	00
20104h	10	10	FF	FF
20108h	08	00	19	91
2010Ch	20	40	60	80
20110h	02	00	$A B$	OF
20114h	30	99	11	55
20118h	40	AA	7 C	EE
2011Ch	FF	$B B$	42	D2
20120h	30	CC	30	90

What is the result of each of the instructions listed below? Assume that the instructions execute in sequence-in other words, the result of each instruction may depend on the results of earlier instructions. Correctly evaluating each instruction will earn you 5 points.
Note that you may assume any constant values shown using less than 32 bits are zero-extended to 32 bits if necessary (for example, 000Fh $=0000000 \mathrm{Fh}$).

MOV DL, FEh
Solution: DL = FEh

MOV DH, AL
Solution: $\mathrm{DH}=\mathrm{AL}=70 \mathrm{~h}(\mathrm{EDX}$ now $=000070 \mathrm{FEh})$

MOVSX BX, BYTE PTR [ESI+000Fh]
Solution: $\mathrm{BX}=$ sign-extended byte at address ESI $+000 \mathrm{Fh}=00020100 \mathrm{~h}+000 \mathrm{Fh}=0002010 \mathrm{Fh}$
$\rightarrow \mathrm{BX}=80 \mathrm{~h}$ sign-extended $=\mathbf{F F 8 0 h}$

MOV [EDI $+E C X], E B X$
Solution: Double-word at address EDI + ECX $=$ EBX

$$
\begin{aligned}
& \text { EDI }+ \text { ECX }=00020110 \mathrm{~h}+00000002 \mathrm{~h}=00020112 \mathrm{~h} \\
\rightarrow & (20112 \mathrm{~h})=\mathrm{EBX}=\mathbf{0 0 0 0 F F 8 0 h}(\text { bytes ordered as } 80 \mathrm{~h}, \mathrm{FFh}, 00 \mathrm{~h}, 00 \mathrm{~h})
\end{aligned}
$$

MOV [ESI+4*ECX], AX

Solution: Word at address ESI $+4 *$ ECX $=$ AX
$\mathrm{ESI}+4 * \mathrm{ECX}=20100 \mathrm{~h}+4 * 2=20108 \mathrm{~h}$
$\rightarrow(20108 \mathrm{~h})=\mathbf{3 1 7 0 h}($ bytes ordered as $70 \mathrm{~h}, 31 \mathrm{~h})$

XCHG
CL, [ESI]
Solution: Swap byte values in CL, address 20110h \rightarrow CL $=\mathbf{1 0 h},(20110 \mathrm{~h})=\mathbf{0 2 h}$

MOVZX EAX, WORD PTR [EDI+ECX]
Solution: EAX $=$ zero-extended word at address EDI + ECX $=20110 \mathrm{~h}+00000010 \mathrm{~h}=20120 \mathrm{~h}$
\rightarrow EAX $=\mathbf{0 0 0 0} \mathbf{C C 3 0 h}$ (original word underlined)

MOV DX, [EDI + FFFFFFFAh]
Solution: DX = word at address EDI+FFFFFFFAh $=20110 \mathrm{~h}+(-6)=2010 \mathrm{Ah}$
$\rightarrow \mathrm{DX}=9119 \mathrm{~h}$

LEA ECX, [ESI $+E B X+0017 \mathrm{~h}]$
Solution: $\mathrm{ECX}=\mathrm{ESI}+\mathrm{EBX}+0017 \mathrm{~h}=20100 \mathrm{~h}+0000 \mathrm{FF} 80 \mathrm{~h}+0017 \mathrm{~h}=\mathbf{3 0 0 9 7} \mathrm{h}$

MOVSX EBX, BYTE PTR [ESI+4]
Solution: EBX $=$ sign-extended byte at address $20104 \mathrm{~h}=\mathbf{0 0 0 0 0 0 1 0 \mathrm { h }}$ (original byte underlined)
2. Assume the initial state of an $x 86$ processor's registers, memory, and carry flag are:

EAX: 00003170h
EBX: 9876DCBAh
ECX: 00001995h
EDX: AC921E14h

Address	Lo		Hi	
8440h	FF	03	99	87
8444h	08	09	F6	$B B$
8448h	78	15	00	00

ESI: 00008440h
8448h
CF: 0
What is the result of each of the instructions listed below? Assume that the instructions execute in sequence-in other words, the result of each instruction may depend on the results of earlier instructions. Correctly evaluating each instruction will earn you 5 points.

Note that you may assume any constant values shown using less than 32 bits are zero-extended to 32 bits if necessary (for example, 000Fh $=0000000 \mathrm{Fh}$).
$A D D \quad A X, B X$
Solution: $\mathrm{AX}=\mathrm{AX}+\mathrm{BX}=3170 \mathrm{~h}+\mathrm{DCBAh}=\mathbf{0 E 2 A h}, \mathbf{C F}=\mathbf{1}$

ADC EAX, ECX
Solution: $\mathrm{EAX}=\mathrm{EAX}+\mathrm{ECX}+\mathrm{CF}=00000 \mathrm{E} 2 \mathrm{Ah}+00001995 \mathrm{~h}+1=\mathbf{0 0 0 0 2 7} \mathbf{C 0 h}, \mathbf{C F}=\mathbf{0}$

INC WORD PTR [ESI]
Solution: Add 1 to word at address ESI $=00008440 \mathrm{~h}$
\rightarrow Word @ $8440 \mathrm{~h}=03 \mathrm{FFh}+1=\mathbf{0 4 0 0 h}$ (byte @ $8440 \mathrm{~h}=00 \mathrm{~h}$, byte $@ 8441 \mathrm{~h}=04 \mathrm{~h}$)

MUL BYTE PTR [ESI+4]
Solution: AX = AL * unsigned byte @ (ESI+4)
\rightarrow Address $=\mathrm{ESI}+4=8440 \mathrm{~h}+4=8444 \mathrm{~h}$; byte $@ 8444 \mathrm{~h}=08 \mathrm{~h}$
$\rightarrow \mathrm{AX}=\mathrm{C} 0 \mathrm{~h} * 08 \mathrm{~h}=192 * 8=1536=\mathbf{0 6 0 0 h}$

SUB $A X,[E S I+8]$
Solution: AX = AX - word @ ESI+8
\rightarrow Address $=$ ESI $+8=8440 \mathrm{~h}+8=8448 \mathrm{~h}$; word @ $8448 \mathrm{~h}=1578 \mathrm{~h}$
$\rightarrow \mathrm{AX}=0600-1578 \mathrm{~h}=\mathbf{F 0 8 8 h}, \mathbf{C F}=\mathbf{1}$ (since borrow out of MSB required)

DEC AH
Solution: AH = AH - $1=$ F0 $-1=\mathbf{E F h}$

IMUL AH
Solution: $\mathrm{AX}=\mathrm{AL} * \mathrm{AH}$ (signed multiplication) $=88 \mathrm{~h} * \mathrm{EFh}=-120 *-17=2040=\mathbf{0 7 F 8 h}$

IDIV $\quad D L$

Solution: AL = AX / DL (signed division) $=07 \mathrm{~F} 8 \mathrm{~h} / 14 \mathrm{~h}=2040 / 20=102=\mathbf{6 6 h}$

$$
\mathrm{AH}=\mathrm{AX} \% \mathrm{DL}(\text { remainder })=2040 \% 20=\mathbf{0 0 h}
$$

DIV DH
Solution: $\mathrm{AL}=\mathrm{AX} / \mathrm{DH}$ (unsigned division) $=0066 \mathrm{~h} / 1 \mathrm{Eh}=102 / 30=\mathbf{0 3 h}$

$$
\mathrm{AH}=\mathrm{AX} \% \mathrm{DH}(\text { remainder })=102 \% 30=12=\mathbf{0} \mathbf{C h}
$$

NEG AH
Solution: $\mathrm{AH}=-\mathrm{AH}=-0 \mathrm{Ch}=-\left(00001100_{2}\right)=\left(11110011_{2}+1=11110100_{2}=\mathbf{F 4 h}\right.$

