# EECE.3170: Microprocessor Systems Design I 

Summer 2016

## Homework 1 Solution

1. (50 points) Given each of the binary or hexadecimal number below, determine what the decimal value is if the number is (i) an unsigned integer, and (ii) a signed integer. Note that, in some cases, your answers for both will be the same.
a. $01101001_{2}$

Since $\mathrm{MSB}=0$, value is same whether unsigned or signed-figure out the significance of each position in which a bit = 1 , and sum those values together.

$$
01101001_{2}=64+32+8+1=\mathbf{1 0 5}
$$

b. $10100110_{2}$

For an unsigned integer, we use the same method as in part (a)

$$
10100110_{2}=128+32+4+2=\mathbf{1 6 6}
$$

For a signed integer, recognize that this value is negative; to find its magnitude, take the two's complement:

$$
-10100110_{2}=01011001_{2}+1=01011010_{2}=64+16+8+2=90
$$

Therefore, $\mathbf{1 0 1 0}^{100110_{2}=\mathbf{- 9 0}}$ when treated as a signed integer.
c. 8Eh (or 0x8E—recall that, in x86 assembly notation, the " $h$ " at the end of a number signifies that the previous value is in hexadecimal)

For an unsigned integer, we don't really need to convert to binary; if you want to do so, $8 \mathrm{Eh}=$ $10001110_{2}$. However, we can also just convert directly to decimal:

$$
8 \mathrm{E}_{16}=(8 \times 16)+(14 \times 1)=\mathbf{1 4 2}
$$

As a signed integer, note that this value is negative, since its $\mathrm{MSB}=1$. To find the magnitude, once again take the two's complement:

$$
-10001110_{2}=01110001_{2}+1=01110010_{2}=64+32+16+2=114
$$

Therefore, as a signed integer, $8 \mathrm{Eh}=\mathbf{- 1 1 4}$.
d. $6 A D 7 h$

Since the most significant bit of this number is $0\left(6 A D 7 h=0110101011010111_{2}\right)$, it has the same value whether it is treated as a signed or unsigned integer. That value is:

$$
\begin{aligned}
& \left(6 \times 16^{3}\right)+\left(10 \times 16^{2}\right)+\left(13 \times 16^{1}\right)+\left(7 \times 16^{0}\right)= \\
& (6 \times 4096)+(10 \times 256)+(13 \times 16)+(7 \times 1)=24576+2560+208+7=\mathbf{2 7 3 5 1}
\end{aligned}
$$

e. CAB5h

This number has different values when treated as signed or unsigned, since the MSB is 1 $\left(\right.$ CAB5h $\left.=1100101010110101_{2}\right)$. As an unsigned integer:

$$
\begin{aligned}
& \left(12 \times 16^{3}\right)+\left(10 \times 16^{2}\right)+\left(11 \times 16^{1}\right)+\left(5 \times 16^{0}\right)= \\
& (12 \times 4096)+(10 \times 256)+(11 \times 16)+(5 \times 1)= \\
& 49152+2560+176+5=\mathbf{5 1 8 9 3}
\end{aligned}
$$

As a signed integer, the magnitude is:

$$
-C A B 5 h=-1100101010110101_{2}=0011010101001011_{2}=354 \mathrm{Bh}
$$

I've shown the conversion back into hexadecimal because it might be slightly easier to figure out the decimal value of the magnitude using what we already know about converting a 16-bit value from hex to decimal:

$$
\begin{aligned}
& \left(3 \times 16^{3}\right)+\left(5 \times 16^{2}\right)+\left(4 \times 16^{1}\right)+\left(11 \times 16^{0}\right)= \\
& (3 \times 4096)+(5 \times 256)+(4 \times 16)+(11 \times 1)=12288+1280+64+11=13643
\end{aligned}
$$

Therefore, $\mathrm{CAB} 5 \mathrm{~h}=\mathbf{- 1 3 6 4 3}$ as a signed integer.
2. (50 points) Assume the contents of memory are shown below. All values are in hexadecimal. The table shows four bytes per line; the given address is the starting address of each line.

Each block in the table contains a single byte, with the low and high bytes per line indicated as shown. Each byte has its own address, so the byte at address 11570 h is 20h, address 11571 h is 16 h , address 11572 h is EEh, and address 11573 h is CEh.
You should assume all multi-byte values are stored in little-endian format.

| Address | Lo |  | Hi |  |
| :---: | :---: | :---: | :---: | :---: |
| 11570h | 20 | 16 | EE | CE |
| 11574h | 31 | 70 | FF | EF |
| 11578h | 01 | 4E | DB | $A B$ |
| 1157Ch | CF | 09 | 49 | 22 |
| 11580h | 55 | 15 | 3A | 68 |
| 11584h | 3B | 87 | 29 | D7 |
| 11588h | 51 | 30 | B2 | 95 |

For each address and amount of data listed, answer the following:

- What data are stored at that address?
- Would an access to the given amount of data at that address be aligned?
- If the data represents a signed integer, what is the sign of that value?

For example, given "Address: 11570h, Data size: word," your response would be that the word at 11570 h is 1620h, the access is aligned, and the data represents a positive integer.

Note: The key points to remember for this problem are:

- Little-endian data are stored with the least significant byte at the lowest address.
- An access is aligned if the address is divisible by the number of bytes being accessed.
- In signed formats, the integer is positive if the most significant bit is 0 and negative if that bit is 1 .
a. Address: 11576h, Data size: word

The word at this address is EFFFh, the access is aligned (since 11576h is divisible by 2), and the data represents a negative integer, since its most significant bit is 1 .
b. Address: 11581h, Data size: byte

The byte at this address is $\mathbf{1 5 h}$, the access is aligned (since every address is divisible by 1 ), and the data represents a positive integer, since its most significant bit is 0 .
c. Address: 1157Ah, Data size: double word

The double word at this address is 09CFABDBh, the access is not aligned (since 1157 Ah is not divisible by 4 ), and the data represents a positive integer, since its most significant bit is 0 .
d. Address: 11573h, Data size: word

The word at this address is $\mathbf{3 1 C E h}$, the access is not aligned (since 11573 h is not divisible by 2 ), and the data represents a positive integer, since its most significant bit is 0 .
e. Address: 11582h, Data size: double word

The double word at this address is 873 B 683 Ah , the access is not aligned (since 11582 h is not divisible by 4), and the data represents a negative integer, since its most significant bit is 1 .

