
 1

16.317: Microprocessor-Based Systems I
Summer 2012

Exam 2

August 1, 2012

Name: __ ID #: _________________________

For this exam, you may use a calculator and one 8.5” x 11” double-sided page of notes. All other
electronic devices (e.g., cellular phones, laptops, PDAs) are prohibited. If you have a cellular
phone, please turn it off prior to the start of the exam to avoid distracting other students.

The exam contains 3 questions for a total of 100 points. Please answer the questions in the spaces
provided. If you need additional space, use the back of the page on which the question is written
and clearly indicate that you have done so.

The last four pages of the exam (beginning with page 7) contain reference material for the exam:
lists of 80386 instructions and condition codes. You may detach these pages and do not have to
submit them when you turn in your exam.

You will have two hours to complete this exam.

Q1: Multiple choice / 20
Q2: Protected mode

memory accesses / 40

Q3: Assembly language / 40
TOTAL SCORE / 100

 2

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Assume SS = 3000H and SP = F018H before the 80386 executes the following instructions:

PUSH AX
PUSH CX
PUSH EDX
PUSH ESI

What is the physical address of the top of the stack after executing the instructions above?

i. 30000H

ii. 3F00CH

iii. 3F010H

iv. 3F018H

v. 3F024H

b. You are given the incomplete loop below:

MOV CX, 000AH
MOV SI, FFFFH

L: INC SI
MOV AX, [SI]

 CMP AX, 00H

Choose one of the instructions below to fill in the blank so that the loop above will exit if (a) 10
iterations have been completed, or (b) the MOV instruction loads a non-zero byte from memory:

i. JMP L

ii. LOOP L

iii. LOOPE L

iv. LOOPNE L

v. IMUL AX

 3

1 (cont.)
c. Assuming A, B, C, and D are all signed integers, what compound condition does the

following instruction sequence test?

MOV AX, A
ADD AX, B
CMP AX, C
SETLE BL
MOV AX, C
CMP AX, D
SETG BH
OR BL, BH

i. (A <= C) || (C > D)

ii. (B <= C) || (C > D)

iii. (A + B <= C) || (C >= D)

iv. (A <= B + C) || (C > D)

v. (A + B <= C) || (C > D)

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply
(but please don’t waste too much time on this question)!

i. “I still don’t know what the difference between a selector and a descriptor is.”

ii. “I’m not sure Dr. Geiger knows what the difference between a selector and a descriptor

is.”

iii. “Would someone please explain why we’re not just programming in C?”

iv. “Is the semester over yet?”

 4

2. (40 points) Protected mode memory accesses
Assume the 80386 is running in protected mode with the state given below. Note that each
memory location shown contains a descriptor for a particular segment.

GDTR = 001631A00038
LDTR = 0010
LDTR cache: base = 00163180
LDTR cache: limit = 001F

Memory Address
Base = 030010F0
Limit = 020F

00163170

Base = 12300020
Limit = 0007

00163178

Base = A0331010
Limit = 0027

00163180

Base = FE002200
Limit = FFFF

00163188

Base = 12340000
Limit = 00FF

00163190

DS = 000E
ES = 001B
EDI = 0000444A
EBX = 0000F000

Memory Address
Base = AC000000
Limit = 0317

00163198

Base = 01610200
Limit = 03F7

001631A0

Base = 00163170
Limit = 0027

001631A8

Base = 00163180
Limit = 001F

001631B0

Base = 05000120
Limit = C00F

001631B8

What address does each of the following instructions access?

a. MOV DX, [40H]

b. XOR ES:[DI], CX

c. BSF AX, WORD PTR [BX+100H]

 5

3. (40 points) Assembly language
For each instruction sequence shown below, list all changed registers, memory locations,
and/or flags, as well as their new values.

a. Initial state:

EAX: 0000ABC0H
EBX: 000012ACH
ECX: 00000020H
EDX: 00000000H
ESI: 00000012H
EDI: 00000200H
DS: 4130H
FLAGS: 00H

Address
41300H 00 F0 08 00
41304H 10 10 00 FF
41308H 30 00 19 91
4130CH 20 40 60 80
41310H AA AA AB 0F
41314H 00 16 55 55
41318H 17 03 7C EE
4131CH AA 55 42 D2
41320H 86 75 30 90

Instructions:
BTC BX, 6

SETNC DL

BSR AX, [SI]

AND AH, DL

SAHF

 6

3 (cont.)
b. Initial state:

EAX: 00003170H
EBX: 0000315CH
ECX: 000031C5H
EDX: 00000000H
ESI: 00000012H
EDI: 0000001CH
DS: 4130H
FLAGS: 00H

Address
41300H 00 F0 08 00
41304H 10 10 00 FF
41308H 30 00 19 91
4130CH 20 40 60 80
41310H AA AA AB 0F
41314H 00 16 55 55
41318H 17 03 7C EE
4131CH AA 55 42 D2
41320H 86 75 30 90

Notes: For CMP instructions, note the relationship between compared values (e.g., “AX < BX”).
For jumps, indicate if the jump is taken and why (e.g., “JG not taken because AX < BX”).
Only evaluate instructions that are actually executed—don’t evaluate skipped instructions.
Instructions:
 CMP AX, BX

 JL L1

 CMP AX, CX

 JL L2

 INC AX

 JMP END

L1: DEC AX

 JMP END

L2: MOV AX, 0123H

END: MOV [DI], AX

 7

The following pages contain references for use during the exam: tables containing the 80386
instruction set and condition codes. You may detach these sheets from the exam and do not need
to submit them when you finish.

Remember that:
• Most instructions can have at most one memory operand.
• Brackets [] around a register name, immediate, or combination of the two indicates an

effective address. That address is in the data segment unless otherwise specified.
o Example: MOV AX, [10H]  contents of DS:10H moved to AX

• Parentheses around a logical address mean “the contents of memory at this address”.
o Example: (DS:10H)  the contents of memory at logical address DS:10H

Category Instruction Example Meaning

Data
transfer

Move MOV AX, BX AX = BX
Move & sign-extend MOVSX EAX, DL EAX = DL, sign-extended

to 32 bits
Move and zero-extend MOVZX EAX, DL EAX = DL, zero-extended

to 32 bits
Exchange XCHG AX, BX Swap contents of AX, BX
Load effective
address

LEA AX, [BX+SI+10H] AX = BX + SI + 10H

Load full pointer LDS AX, [10H]

LSS EBX, [100H]

AX = (DS:10H)
DS = (DS:12H)

EBX = (DS:100H)
SS = (DS:104H)

Arithmetic

Add ADD AX, BX AX = AX + BX
Add with carry ADC AX, BX AX = AX + BX + CF
Increment INC [DI] (DS:DI) = (DS:DI) + 1
Subtract SUB AX, [10H] AX = AX – (DS:10H)
Subtract with borrow SBB AX, [10H] AX = AX – (DS:10H) – CF
Decrement DEC CX CX = CX – 1
Negate (2’s
complement)

NEG CX CX = -CX

Unsigned multiply
(all operands are non-
negative, regardless
of MSB value)

MUL BH
MUL CX
MUL DWORD PTR [10H]

AX = BH * AL
(DX,AX) = CX * AX
(EDX,EAX) = (DS:10H) *
EAX

Signed multiply
(all operands are
signed integers in 2’s
complement form)

IMUL BH
IMUL CX
IMUL DWORD PTR[10H]

AX = BH * AL
(DX,AX) = CX * AX
(EDX,EAX) = (DS:10H) *
EAX

Unsigned divide DIV BH

DIV CX

DIV EBX

AL = AX / BH (quotient)
AH = AX % BH (remainder)

AX = EAX / CX (quotient)
DX = EAX % CX (remainder)

EAX = (EDX,EAX) / EBX (Q)
EDX = (EDX,EAX) % EBX (R)

 8

Category Instruction Example Meaning

Logical

Logical AND AND AX, BX AX = AX & BX
Logical inclusive OR OR AX, BX AX = AX | BX
Logical exclusive OR XOR AX, BX AX = AX ^ BX
Logical NOT
(1’s complement)

NOT AX AX = ~AX

Shift/rotate
(NOTE: for
all
instructions
except
RCL/RCR,
CF = last
bit shifted
out)

Shift left SHL AX, 7

SAL AX, CX

AX = AX << 7

AX = AX << CX

Logical shift right
(treat value as
unsigned, shift in 0s)

SHR AX, 7 AX = AX >> 7
(upper 7 bits = 0)

Arithmetic shift right
(treat value as signed;
maintain sign)

SAR AX, 7 AX = AX >> 7
(upper 7 bits = MSB of
original value)

Rotate left ROL AX, 7 AX = AX rotated left by 7
(lower 7 bits of AX =
upper 7 bits of original
value)

Rotate right ROR AX, 7 AX=AX rotated right by 7
(upper 7 bits of AX =
lower 7 bits of original
value)

Rotate left through
carry

RCL AX, 7 (CF,AX) rotated left by 7
(Treat CF & AX as 17-bit
value with CF as MSB)

Rotate right through
carry

RCR AX, 7 (AX,CX) rotated right by
7
(Treat CF & AX as 17-b8t
value with CF as LSB)

Bit test/
scan

Bit test BT AX, 7 CF = Value of bit 7 of AX
Bit test and reset BTR AX, 7 CF = Value of bit 7 of AX

Bit 7 of AX = 0
Bit test and set BTS AX, 7 CF = Value of bit 7 of AX

Bit 7 of AX = 1
Bit test and
complement

BTC AX, 7 CF = Value of bit 7 of AX
Bit 7 of AX is flipped

Bit scan forward BSF DX, AX DX = index of first non-
zero bit of AX, starting
with bit 0
ZF = 0 if AX = 0, 1
otherwise

Bit scan reverse BSR DX, AX DX = index of first non-
zero bit of AX, starting
with MSB
ZF = 0 if AX = 0, 1
otherwise

 9

Category Instruction Example Meaning

Flag
control

Clear carry flag CLC CF = 0
Set carry flag STC CF = 1
Complement carry
flag

CMC CF = ~CF

Clear interrupt flag CLI IF = 0
Set interrupt flag STI IF = 1
Load AH with
contents of flags
register

LAHF AH = FLAGS

Store contents of AH
in flags register

SAHF FLAGS = AH
(Updates SF,ZF,AF,PF,CF)

Conditional
tests

Compare CMP AX, BX Subtract AX – BX
Updates flags

Byte set on condition SETcc AH AH = FF if condition true
AH = 0 if condition false

Jumps and
loops

Unconditional jump JMP label Jump to label
Conditional jump Jcc label Jump to label if

condition true
Loop LOOP label Decrement CX; jump to

label if CX != 0
Loop if equal/zero LOOPE label

LOOPZ label
Decrement CX; jump to
label if (CX != 0) &&
(ZF == 1)

Loop if not equal/zero LOOPNE label
LOOPNZ label

Decrement CX; jump to
label if (CX != 0) &&
(ZF == 0)

Subroutine-
related
instructions

Call subroutine CALL label Jump to label; save
address of instruction
after CALL

 Return from
subroutine

RET label Return from subroutine
(jump to saved address
from CALL)

 Push PUSH AX

PUSH EAX

SP = SP – 2
(SS:SP) = AX

SP = SP – 4
(SS:SP) = EAX

 Pop POP AX

POP EAX

AX = (SS:SP)
SP = SP + 2

EAX = (SS:SP)
SP = SP + 4

 Push flags PUSHF Store flags on stack
 Pop flags POPF Remove flags from stack
 Push all registers PUSHA Store all general purpose

registers on stack
 Pop all registers POPA Remove general purpose

registers from stack

 10

Condition

code Meaning Flags

O Overflow OF = 1
NO No overflow OF = 0
B
NAE
C

Below
Not above or equal
Carry

CF = 1

NB
AE
NC

Not below
Above or equal
No carry

CF = 0

S Sign set SF = 1
NS Sign not set SF = 0
P
PE

Parity
Parity even PF = 1

NP
PO

No parity
Parity odd PF = 0

E
Z

Equal
Zero ZF = 1

NE
NZ

Not equal
Not zero ZF = 0

BE
NA

Below or equal
Not above CF OR ZF = 1

NBE
A

Not below or equal
Above CF OR ZF = 0

L
NGE

Less than
Not greater than or equal SF XOR OF = 1

NL
GE

Not less than
Greater than or equal SF XOR OF = 0

LE
NG

Less than or equal
Not greater than (SF XOR OF) OR ZF = 1

NLE
G

Not less than or equal
Greater than (SF XOR OF) OR ZF = 0

	Summer 2012
	Exam 2
	August 1, 2012
	TOTAL SCORE

