The following pages contain references for use during the exam: a table containing the 80386 instructions we have covered thus far. You may detach these sheets from the exam and do not need to submit them when you finish.

Remember that:

- Most instructions can have at most one memory operand.
- Brackets [] around a register name, immediate, or combination of the two indicates an effective address. That address is in the data segment unless otherwise specified.
 - Example: MOV AX, [10H] \rightarrow contents of DS:10H moved to AX
- Parentheses around a logical address mean "the contents of memory at this address".
 Example: (DS:10H) → the contents of memory at logical address DS:10H

Category	Instruction	Example	Meaning
Data transfer	Move	MOV AX, BX	AX = BX
	Move & sign-extend	MOVSX EAX, DL	EAX = DL, sign-extended
	_		to 32 bits
	Move and zero-extend	MOVZX EAX, DL	EAX = DL, zero-extended
			to 32 bits
	Exchange	XCHG AX, BX	Swap contents of AX, BX
	Load effective	LEA AX, [BX+SI+10H]	AX = BX + SI + 10H
	address		
	Load full pointer	LDS AX, [10H]	AX = (DS:10H)
			DS = (DS:12H)
		LSS EBX, [100H]	EBX = (DS:100H)
			SS = (DS:104H)
	Add	ADD AX, BX	AX = AX + BX
	Add with carry	ADC AX, BX	AX = AX + BX + CF
	Increment	INC [DI]	(DS:DI) = (DS:DI) + 1
	Subtract	SUB AX, [10H]	AX = AX - (DS:10H)
	Subtract with borrow	SBB AX, [10H]	AX = AX - (DS:10H) - CF
	Decrement	DEC CX	CX = CX - 1
	Negate (2's	NEG CX	CX = -CX
	complement)		
	Unsigned multiply	MUL BH	AX = BH * AL
	(all operands are non-	MUL CX	(DX, AX) = CX * AX
Arithmetic	negative, regardless	MUL DWORD PTR [10H]	(EDX,EAX) = (DS:10H) *
	of MSB value)		EAX
	Signed multiply	IMUL BH	AX = BH * AL
	(all operands are	IMUL CX	(DX, AX) = CX * AX
	signed integers in 2's	IMUL DWORD PTR[10H]	(EDX,EAX) = (DS:10H) *
	complement form)		EAX
	Unsigned divide	DIV BH	AL = AX / BH (quotient)
			AH = AX % BH (remainder)
		DIV CX	AX = EAX / CX (quotient)
			DX = EAX % CX (remainder)
		DIN EDY	
		DIV EBY	EAA = (EDA, EAA) / EBX (Q) $EDY = (EDY EAY) & EDY (D)$
			EDA - (EDA,EAA) 6 EBA (R)

Category	Instruction	Example	Meaning
Logical	Logical AND	AND AX, BX	AX = AX & BX
	Logical inclusive OR	OR AX, BX	AX = AX BX
	Logical exclusive OR	XOR AX, BX	$AX = AX ^ BX$
	Logical NOT	NOT AX	$AX = \sim AX$
	(1's complement)		
	Shift left	SHL AX, 7	AX = AX << 7
		SAL AX, CX	AX = AX << CX
	Logical shift right	SHR AX, 7	AX = AX >> 7
	(treat value as		(upper 7 bits = 0)
	unsigned, shift in 0s)		
	Arithmetic shift right	SAR AX, 7	AX = AX >> 7
Shift/rotate	(treat value as signed;		(upper 7 bits = MSB of
(NOTE: for	maintain sign)		original value)
all instructions except RCL/RCR, CF = last bit shifted out)	Rotate left	ROL AX, 7	AX = AX rotated left by 7
			(lower 7 bits of AX =
			upper 7 bits of original
			value)
	Rotate right	ROR AX, 7	AX=AX rotated right by 7
			(upper 7 bits of AX =
			lower 7 bits of original
			value)
	Rotate left through	RCL AX, 7	(CF,AX) rotated left by 7
	carry		(Treat CF & AX as 17-bit
			value with CF as MSB)
	Rotate right through	RCR AX, 7	(AX,CF) rotated right by
	carry		7
			(Treat CF & AX as 17-b8t
			value with CF as LSB)