EECE.3170: Microprocessor Systems Design I
 Spring 2016
 Homework 4
 Due 1:00 PM, Friday, 3/4/16

Notes:

- While typed solutions are preferred, handwritten solutions are acceptable.
- Any electronic submission must be in a single file. Archive files will not be accepted.
- Electronic submissions should be e-mailed to Dr. Geiger at Michael Geiger@uml.edu. Please include your name as part of your filename (for example, mgeiger_hw4.pdf).
- This assignment is worth 100 points.

Each of the questions on the next two pages asks you to convert a high-level code sequence to x86 assembly. Please note that each of these code sequences is part of a larger function-do not worry about any of the function call and stack frame details discussed during lectures 14,16 , and 17. (That material will be covered on HW 4.)

1. (25 points) Implement the following conditional statement. You may assume that " X ", " Y ", and " Z " refer to 16 -bit variables stored in memory, which can be directly accessed using those names (for example, MOV AX, X would move the contents of variable " X " to the register AX). Your solution should not modify AX or BX.
```
if (AX >= 40) {
    Z = X - Y;
}
else {
    Z = X + Y;
    if (Z > 0)
        X = BX * 8;
    else
        X = BX / 4;
}
```

2. (25 points) Implement the following loop. As in question 1 , assume " X " is a 16 -bit variable in memory that can be accessed by name. (Hint: Any loop that executes the correct number of iterations is acceptable-you do not necessarily have to change your loop counter in exactly the same way as the for loop, since i is not used in the body of the loop.)
```
for (i = 0; i < X; i++) {
    AX = AX + X;
    BX = BX - X;
    if (AX == BX)
        break; // Exit loop early
}
```

3. (25 points) Implement the following conditional statement. As in question 1 , assume " X " and " Y " are 16-bit variables in memory that can be accessed by name. (Note: Make sure you carefully count the parentheses to make sure you combine conditions correctly!)
```
if (((AX < X) && (BX < Y)) || ((AX > Y) && (BX > X))) {
    AX = AX - BX;
}
```

4. (25 points) Implement the following loop. As in previous questions, assume " X ", " Y ", and " Z " are 16 -bit variables in memory that can be accessed by name. Recall that a while loop is a more general type of loop than the for loop seen in question 2-a while loop simply repeats the loop body as long as the condition tested at the beginning of the loop is true.
```
while ((Y > 0) && (X < O)) {
    X = X + Z;
    Y = Y - X;
    Z = Z + AX;
}
```

