
 1

EECE.3170: Microprocessor Systems Design I
Spring 2016

Exam 3 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. You are running a PIC16F1829 program that uses two I/O ports, Port A and Port C. If

TRISA = 0x0F and TRISC = 0x19, how many I/O pins, in total, are configured as inputs?

i. 4

ii. 7 (TRISx pin = 1 à I/O pin is input. 0x0F contains four 1s, 0x19 contains 3)

iii. 9

iv. 15

v. 40

b. Under what conditions will the following code jump to the label L1?

movf x, W
subwf y, W
btfsc STATUS, Z

 btfss STATUS, C
 goto L1
END:

Both choices (i) and (v) were accepted because while this code technically tests the condition
in choice (v), the carry flag will never determine the outcome of the jump—if x == y and the
btfsc instruction doesn’t skip, C must be 1, which means the btfss instruction will always skip.

i. x ≠ y

ii. x = y or C = 1

iii. x = y or C = 0

iv. x ≠ y or C = 1

v. x ≠ y or C = 0

 2

1 (continued)
c. You are given the following short PIC16F1829 assembly function:

F: movf PORTC, W
 andlw B'00000001'
 addwf PCL, F
 retlw B'11110000'
 retlw B'00111100'
 retlw B'00001111'
 retlw B'11111111'

Which of the following PORTC values will cause this function to return B'00001111'?

i. PORTC = 0xF0

ii. PORTC = 0x19

iii. PORTC = 0x86

iv. PORTC = 0x3F

v. None of the above (In order for the function to return that value, the andlw instruction
would have to produce the value 2, which would then be added to PCL to jump an
extra 2 instructions ahead (the default behavior is to go to the next instruction). Since
the andlw instruction will only produce the value 0 or 1, it’s impossible for this
function to execute the third or fourth retlw instructions.)

d. Circle one (or more) of the choices below that you feel best “answers” this “question.”

i. “Thanks for the free points.”

ii. “I don’t REALLY have to answer the last three questions, do I?”

iii. “This exam is the best final I’ve taken all day.”

iv. None of the above.

All of the above are “correct.”

 3

2. (15 points) General microcontroller programming
a. (4 points) You are given the following delay loop:

Ten_1
 decfsz COUNTL,F ; Inner loop
 goto Ten_1
 decfsz COUNTH,F ; Outer loop
 goto Ten_1
 return

If COUNTL is initially 100, COUNTH is initially 10, the clock frequency is 500 kHz, and each
instruction takes 4 clock cycles, how long does the whole delay loop take? Show your work for
full credit.

Solution: The total amount of delay is the product of four factors: the clock cycle time, the
number of cycles per instruction, the number of instructions per loop iteration, and the number
of iterations. To determine each of these:

• Clock cycle time = 1 / (clock frequency) = 1 / 500 kHz = 2 x 10-6 sec = 2 µs
• Cycles per instruction is given as 4, which means each instruction takes 4 * 2 = 8 µs
• The number of instructions per iteration and number of loop iterations can be considered

together to determine the total number of instructions:
o For each decfsz/goto pair, the goto instruction is executed one fewer time than the

decfsz because the goto is skipped the last time through the loop.
o The number of iterations is based on the initial value of the variable being

decremented:
§ For the outer loop, the decfsz executes 10 times and the goto executes 9.
§ The inner loop works differently on the first iteration than on all others:

• 1st time: decfsz executes 100 times, goto executes 99
• 2nd through 10th times: decfsz executes 256 times (since COUNTL

is initially 0), goto executes 255.
o The total number of instructions can be broken down as shown below, with the

total instruction count for each instruction shown in red:

Ten_1
 decfsz COUNTL,F 100 + 9 * 256 = 2404
 goto Ten_1 99 + 9 * 255 = 2394
 decfsz COUNTH,F 10
 goto Ten_1 9
 return 1
 TOTAL: 2404 + 2394 + 10 + 9 + 1 = 4818

The total delay is therefore (4818 instructions) * (8 µs per instruction) = 38544 µs = 38.544 ms.

 4

2 (continued)
b. (3 points) In the blinking LED state machine program we covered in class, the following

instructions isolate the lowest three bits of PORTD and copy them into W:

movf PORTD, W
 andlw B'00000111'

Why might it be necessary to isolate the lowest three bits and mask out the upper five bits of
PORTD?

Solution: Because other devices could be connected to those upper five bits, and their state
shouldn’t affect the operation of the rest of the “blink” function.

c. (4 points) Say your program uses a 10-bit analog-to-digital converter (ADC) with

positive/negative reference voltages of 5 V and 0 V, respectively. If the ADC output is 256,
approximately what voltage was input to the converter? Show your work for full credit.

Solution: A ten-bit ADC will produce 210 = 1024 possible values, between 0 and 210 – 1 = 1023.
In class, we discussed the formula: ADC value = (V / VREF) * 1023—in other words, determine
what the ratio of the input voltage to the positive reference voltage (assuming a negative
reference voltage of 0), and multiply that by the maximum ADC output. We can manipulate that
formula to determine the input voltage, V:

 (ADC value) / 1023 = V / VREF
 ((ADC value) * VREF) / 1023 = V

Plugging in the values that are given:

 (256 * 5 V) / 1023 = 1.25122 V ≈ 1.25 V

d. (4 points) Say you are writing a program using two interrupts. One interrupt is triggered

when a timer overflows, while the other is triggered when a switch is pressed. Describe a
situation in which you would want to prioritize the timer interrupt (and therefore handle the
timer interrupt first if both types of interrupt occur simultaneously), and describe a situation
in which you would want to prioritize the switch interrupt.

Solution: If a precise interval between events is required, then the timer interrupt (which
presumably determines that interval) should be prioritized.

If timing is not as important and the button press is used to trigger an important event, then that
interrupt should be prioritized.

 5

3. (15 points) PIC C programming
Complete the short function below by writing the appropriate line(s) of C code into each of the
blank spaces. The purpose of each line is described in a comment to the right of the blank.
This interrupt service routine detects both switch and timer interrupts and works with the analog-
to-digital converter (ADC). The ISR does the following:

• On a timer interrupt, start an analog-to-digital conversion.

• On a switch interrupt, check if the ADC is done. If the ADC is done, assign the lowest
four bits of the result to the LEDs, making sure to only change the lowest four bits of Port
C while leaving the upper four bits the same.

Assume the LEDs are wired to the lowest four bits of Port C (as on the board used in HW 8) the
ADC result is right-justified, and that “SWITCH” and “DOWN” are appropriately defined.

void interrupt ISR(void) {

 if (IOCAF) { // SW1 was pressed
 IOCAF = 0; // Clear flag in software
 __delay_ms(5); // Delay for debouncing
 if (SWITCH == DOWN) { // If switch still pressed

 if (GO == 0) { // check if ADC is done

 LATC = LATC & 0xF0; // If done, assign lowest 4
 LATC = LATC | (ADRESL & 0x0F); // result bits to LEDs,
 // making sure to only
 // change correct bits

 }

 }
 }
 if (INTCONbits.T0IF) { // Timer 0 interrupt

 INTCONbits.T0IF = 0; // Clear flag in software

 GO = 1; // Start ADC
 }
}

 6

4. (50 points, 25 points per part) PIC assembly programming
For each of the following complex operations, write a sequence of PIC 16F1829 instructions—
not C code—that performs an equivalent operation. CHOOSE ANY TWO OF THE THREE
PARTS and fill in the space provided with appropriate code. You may complete all three parts
for up to 10 points of extra credit, but must clearly indicate which part is the extra one—I
will assume it is part (c) if you mark none of them.

Assume that 8-bit variables “TEMP” and “COUNT” have been defined for cases where you may
need extra variables.

Finally, please note that you are not required to write comments describing each instruction. You
may certainly do so if you feel comments will make your solution clearer to the instructor.

a. You are given two 8-bit variables, P and Q. Write a sequence of instructions that takes the bit
sequence in P and stores its reverse in Q. For example:

• If P = 0xF0 = 111100002, Q = 000011112 = 0x0F

• If P = 0x15 = 000101012, Q = 101010002 = 0xA8
Your solution should not change P.

Solution: Other answers may be acceptable. The general idea behind this solution is to shift
each bit of P into the carry flag, then rotate that bit from the carry flag into Q. As long as these
operations are performed in opposite directions, Q will hold the same bits in reverse order.
You could argue that this solution doesn’t follow directions—it does, after all, “change” P—but
saving the original value of P before starting the loop allows you to restore it when the loop is
done, giving the appearance that P never changed.

 clrf Q ; Start with Q == 0
 movlw 8 ; Set loop counter to 8 since
 movwf COUNT ; there are 8 bits in each register
 movf P, W ; Copy P into the working register so its
 ; original value can be restored at the end
L: lsrf P, F ; Shift the least significant bit of P
 ; into the carry bit
 rlf Q, F ; Rotate the carry flag (the bit shifted out of P)
 ; into Q, moving the other bits to the left
 decfsz COUNT, F ; Decrement COUNT and return to the
 goto L ; start of the loop if COUNT != 0
 movwf P ; Restore the original value of P

; once the loop is done

 7

4 (continued)
Remember, you can assume that 8-bit variables “TEMP” and “COUNT” have been defined for
cases where you may need extra variables.
b. You have a 16-bit variable, X, and an 8-bit variable, P. You can access individual bytes

within X—the low byte, XL, holds bit positions 0 to 7, and the high byte, XH, holds bit
positions 8 to 15.

Write a sequence of instructions that sets P equal to the highest bit position within X that
contains a 1. (This operation is similar to the x86 BSR instruction). If X = 0, P should be
unchanged. For example:

• If X = 0x61AB = 0110 0001 1010 10112, P = 14 (underlined bit is “highest” 1)

• If X = 0x0082 = 0000 0000 1000 00102, P = 7
Your solution should not change XL or XH.

Solution: Other solutions may be acceptable. This solution does the following:

• Test each byte, starting with XH (since we’re looking for highest 1). If both 0, leave P
unchanged. Otherwise, move the byte to be tested into TEMP, and set P equal to its
maximum possible value (15 if the byte is XH, 7 if the byte is XL).

• Using a bitmask that starts with a single 1 in the MSB (because, again, we’re looking for
the highest 1), test each bit of TEMP by ANDing the bitmask with TEMP.

o If the result of the AND is non-zero, you’ve found the highest 1.

o If the result of the AND is 0, shift the bitmask to the right (moving the 1 to the next
lowest bit) and decrement P (decreasing the bit position).

o Note that the “TestBits” loop doesn’t need a variable to count iterations. If your
code enters that loop, then at least one of the bytes is non-zero, and the goto
instruction that jumps to “TestDone” will be executed when the first 1 is found.

The code for this problem is written in full on the next page because (1) it required the detailed
explanation above, and (2) the code itself turned out to be pretty long. My apologies to my
Spring 2016 students!

 8

Solution (continued):

movlw 0x80 ; COUNT will be bitmask used to test register
movwf COUNT ; (either XH or XL); start with 1 in MSB
movf XH, W ; Test to see if XH == 0; if not, highest

 btfsc STATUS, Z ; non-zero bit is in XH
 goto TestXL ; Otherwise, test XL
 movwf TEMP ; Set TEMP = XH (XH is already in W)
 movlw 15 ; Set P = 15 to start, since bit position
 movwf P ; will be between 15 and 8
 goto TestBits ; Jump to actual bit test
TestXL:
 movf XL, W ; Test to see if XL == 0; if not, exit sequence
 btfsc STATUS, Z ; and don’t change P at all
 goto TestDone
 movwf TEMP ; Set TEMP = XL (XL is already in W)
 movlw 7 ; Set P = 7 to start, since bit position
 movwf P ; will be between 7 and 0
TestBits:

movf TEMP, W ; Set W = register to be tested
 andwf COUNT, W ; AND register with COUNT (bit mask)
 btfss STATUS, Z ; If result of AND != 0, tested bit must be 1 so
 goto TestDone ; P = correct bit position and sequence is done
 decf P, F ; Decrement P and shift bit mask to
 lsrf COUNT, F ; prepare to test next bit
 goto TestBits
TestDone: ; End of sequence

 9

4 (continued)
Remember, you can assume that 8-bit variables “TEMP” and “COUNT” have been defined for
cases where you may need extra variables.
c. You are given two unsigned 16-bit values, X and Y. You can access individual bytes within

each value—“X” contains bytes XH and XL (XL is the least-significant byte) and “Y”
contains bytes YH and YL.

Write a sequence of instructions that jumps to location “L1” if X is greater than or equal to
Y. Your solution should not change any of the bytes of X or Y. Again, assume X and Y are
unsigned (i.e., non-negative).

Solution: Other solutions may be acceptable. The key points are:

• Performing a 16-bit subtraction in which the result ends up in the working register, so
neither X nor Y is changed.

• Evaluating the carry flag to determine whether a borrow was used. If a borrow was not
used (i.e., if C == 1), then X is greater than or equal to Y and the jump should be taken.

movf YL, W ; W = YL
subwf XL, W ; W = XL – YL
movf YH, W ; W = YH
subwfb XH, W ; W = XH – YH – (~C) (account for borrow in lo byte)
btfsc STATUS, C ; If C == 1 (borrow occurred), then X >= Y
goto L1 ; and program should jump to L1

