
 1

EECE.3170: Microprocessor Systems Design I
Spring 2016

Exam 2 Solution

1. (16 points, 4 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

Please note that all of the multiple choice questions deal with PIC 16F1829 instructions.

a. Which of the following instructions can always be used to complement the working register,

W? (Note: remember that a complement operation simply flips all the bits of a register—it is
not the same as negating a register.)

i. comf x, W

ii. addlw -1

iii. sublw 0

iv. xorlw 0xFF

v. iorwf x, W

 2

1 (continued)
b. Which of the following code snippets will jump to the label L if x = 0x01?

A. btfss x, 0
 goto L

B. btfsc x, 7

goto L

C. decfsz x, F
goto L

D. incfsz x, F
goto L

i. Only A

ii. Only D (all other choices skip the goto instruction)

iii. A and B

iv. B and C

v. A, B, and C

 3

1 (continued)
c. Which of the following instructions will set the carry bit (C) to 1 if the file register x is equal

to 0xF0, the working register is equal to 0x20, and the carry bit is initially 0?

A. subwf x, F C = 1 because x > W à no borrow required

B. lslf x, F C = 1 because MSB shifted into carry

C. rrf x, F C = 0 because LSB rotated into carry

D. addwf x, F C = 1 because 0xF0 + 0x20 = 0x110 à only 8
 bits in sum, so underlined bit is carry

i. A and B

ii. B and C

iii. A, B, and C

iv. A, B, and D

v. A, B, C, and D

d. Which of the following instructions has the same effect as rotating a file register, x, by four
bits, without including the carry?

i. rrf x, F

ii. rlf x, F

iii. lslf x, F

iv. asrf x, F

v. swapf x, F

 4

2. (16 points) Reading PIC assembly
Show the result of each PIC 16F1829 instruction in the sequences below. Be sure to show the
state of the carry (C) bit for any shift or rotate operations. You may assume C is initially 0.
a. cblock 0x70

x
 endc

clrf x x = 0x00

comf x, W W = ~x = ~0x00 = 0xFF

sublw 0x10 W = 0x10 – W = 0x10 – 0xFF = 0x11, C = 0

incf x, F x = x + 1 = 0x00 + 1 = 0x01

lslf x, F x = x << 1 = 0x01 << 1 = 0000 0001 << 1

 = 0000 0010 = 0x02

 C = bit shifted out = 0

iorwf x, F x = x OR W = 0x02 OR 0x11 = 0x13

xorlw 0x3C W = W XOR 0x3C = 0x11 XOR 0x3C

 = 0001 0001 XOR 0011 1100

 = 0010 1101 = 0x2D

addwf x, W x = x + W = 0x13 + 0x2D = 0x40, C = 0

 5

3. (28 points) Subroutines; HLL à assembly
The following questions (parts a-c) deal with the register and memory contents shown below.
Note that:

• These values represent the state of some registers and memory locations immediately
after the stack frame has been set up for the current function.

• The entire stack frame for the current function is shown, but there may be some
additional data stored in the given address range—do not assume that the values shown in
memory represent only the contents of the current stack frame.

• For parts a-c of this problem, you can assume that the stack frame for the current function
starts at address 0x12580020.

EAX: 0x0000ABBA
EBX: 0x00001400
ECX: 0x09090909
EDX: 0xFF000000
ESI: 0x11340550
EDI: 0x11340590
ESP: 0x12580008
EBP: 0x12580014

Address
0x12580000 0x00000005
0x12580004 0xCAE11600
0x12580008 0x09090909
0x1258000C 0x00001400
0x12580010 0x00000000
0x12580014 0x12580040
0x12580018 0x31700050
0x1258001C 0xFF000000
0x12580020 0x0000ABBA

a. (5 points) Assuming each argument uses 4 bytes, how many arguments does this function
take? Explain your answer.

Solution: To solve this problem, consider that (1) the bottom of the stack frame is 0x12580020,
and (2) EBP is equal to 0x12580014. That means address 0x12580014 holds the saved base
pointer, address 0x12580018 holds the function’s return address, and everything at higher
addresses within the stack frame represents the function arguments. Since there are 8 bytes
remaining in the stack frame, this function takes two arguments.

b. (4 points) Can you determine how many bytes of data the function called before the current

function uses for local variables and saved registers? If so, explain how many bytes that
function uses; if not, explain why not.

Solution: Recall that local variables and saved registers are stored above (i.e., at lower
addresses than) the saved base pointer in a stack frame. Therefore, all data between the previous
frame’s base pointer and the start of the current frame is used for local variables and saved
registers. Since the previous function’s base pointer is saved in the current frame, we can figure
out how much space that function uses for local variables and saved data.
The saved base pointer is 0x12580040; the start of the current stack frame is 0x12580020, but
we need to account for the fact that 4 bytes of data are stored at that address. The top of the
previous function’s stack frame is therefore 0x12580024, giving 0x12580040 – 0x12580024 =
0x1C = 28 bytes of data used for local variables and saved registers in the previous stack frame.

 6

3 (continued)
c. (4 points) If we assume that the function uses the stack to save every register it overwrites,

what registers does this function overwrite? Explain your answer.

Solution: The top of the current stack frame is ESP = 0x12580008. Saved registers are saved at
the top of the stack. So, starting at that address, we see two values that match current registers:
ECX (0x09090909) and EBX (0x00001400).

d. (15 points) A partially completed x86 function is written below. Complete the function by
writing the appropriate instructions in the blank spaces provided. The comments next to each
blank or instruction describe the purpose of that instruction. Assume that the function takes
two arguments (v1 and v2, in that order) and contains a single local integer variable, x.

f PROC ; Start of function f
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp

 sub esp, 4 ; Create space on stack for x

 mov ebx, DWORD PTR 8[ebp] ; ebx = v1

 add ebx, DWORD PTR 12[ebp] ; ebx = v1 + v2

 mov DWORD PTR -4[ebp], ebx ; x = ebx = v1 + v2 (copy ebx
 ; to memory location for x)
 sar ebx, 2 ; ebx = ebx >> 2 = x >> 2

 add ebx, DWORD PTR -4[ebp] ; ebx = ebx + x = (x >> 2) + x

 mov esp, ebp ; Clear space allocated for
 ; local variable
 pop ebp ; Restore ebp

 ret ; Return from subroutine
f ENDP

 7

4. (40 points) Conditional instructions
For each part of this problem, write a short x86 code sequence that performs the specified
operation. CHOOSE ANY TWO OF THE THREE PARTS and fill in the space provided with
appropriate code. You may complete all three parts for up to 10 points of extra credit, but
must clearly indicate which part is the extra one—I will assume it is part (c) if you mark
none of them.

Note also that your solutions to this question will be short sequences of code, not subroutines.
You do not have to write any code to deal with the stack when solving these problems.

a. Implement the following conditional statement. You may assume that “X” and “Y” refer to

16-bit variables stored in memory, which can be directly accessed using those names (for
example, MOV AX, X would move the contents of variable “X” to the register AX). Your
solution should not modify AX or BX.

if (X < 10) {
 Y = X + AX;
}
else if (Y > BX) {
 X = Y – AX;
}
else {
 X = Y * 4;
 Y = X / 4;
}

Solution: Other solutions may be valid. Note that, in the else case, Y doesn’t actually change, so
instructions that modify it are really unnecessary.
 CMP X, 10
 JGE L1 ; Jump to second comparison if X >= 10
 MOV DX, X ; if case: start by setting DX = X
 MOV Y, DX ; Y = DX = X
 ADD Y, AX ; Y = Y + AX = X + AX
 JMP end ; Skip else if, else cases
L1: CMP Y, BX
 JLE L2 ; Jump to else case if Y <= BX
 MOV DX, Y ; else if case: set DX = Y
 MOV X, DX ; X = DX = Y
 SUB X, AX ; X = X – AX = Y – AX
 JMP end ; Skip else case
L2: MOV DX, Y ; else case: set DX = Y
 SHL DX, 2 ; DX = DX << 2 = Y << 2 = Y * 4
 MOV X, DX ; X = DX = Y * 4
 SHR DX, 2 ; DX = DX >> 2 = X >> 2 = X / 4
 MOV Y, DX ; Y = DX = X / 4
end: ; Target to skip else if, else cases

 8

4 (continued)
b. Implement the following loop. As in part (a), assume “X” and “Y” are 16-bit variables in

memory that can be accessed by name. Assume that ARR is an array of 32-bit values, and that
the loop does not go outside the bounds of the array. The starting address of this array is in
the register SI when the loop starts—you can use that register to help you access values
within the array. Your solution should not modify X, Y, or EAX.

for (i = X; i < Y; i = i + 3) {
 ARR[i+1] = ARR[i] + ARR[i+2];
 ARR[i] = ARR[i+2] – EAX;
}

Solution: Other solutions may be correct.

 MOV ECX, X ; Let ECX = i; initialize i = X
L: LEA EDX, [SI+4*ECX] ; EDX = address of ARR[i]
 MOV EBX, [EDX] ; EBX = ARR[i]
 ADD EBX, [EDX+8] ; EBX = ARR[i] + ARR[i+2]
 MOV [EDX+4], EBX ; ARR[i+1] = ARR[i] + ARR[i+2]
 MOV EBX, [EDX+8] ; EBX = ARR[i+2]
 SUB EBX, EAX ; EBX = ARR[i+2] – EAX
 MOV [EDX], EBX ; ARR[i] = ARR[i+2] – EAX
 ADD ECX, 3 ; i = i + 3
 CMP ECX, Y ; Compare i to Y and return to
 JL L ; start of loop if i < Y

 9

4 (continued)
c. Implement the following loop. As in part (a), assume “X”, “Y”, and “Z” are 16-bit variables

in memory that can be accessed by name. Recall that a while loop is a more general type of
loop than the for loop seen in part (b)—a while loop simply repeats the loop body as long as
the condition tested at the beginning of the loop is true. Your solution should not modify AX
or BX.

while ((X < AX) || (Y > BX)) {

X = X - Z;
Y = Y + X;

}

Solution: Other solutions may be correct.

ST: CMP X, AX ; If X < AX, goto loop body (LB),
 JL LB ; since only part of condition
 ; must be true to stay in loop
 CMP Y, BX ; If Y <= BX, exit loop
 JLE DONE
LB: MOV DX, Z ; DX = Z
 SUB X, DX ; X = X – DX = X – Z
 MOV DX, X ; DX = X
 ADD Y, DX ; Y = Y + DX = Y + X
 JMP ST ; Return to conditional tests at
 ; start of loop
DONE: ; Label for loop exit

