
 1

EECE.3170: Microprocessor Systems Design I
Spring 2016

Exam 2
March 30, 2016

Name: ___

Section (circle 1): 201 (MWF 9-9:50) 202 (MWF 10-10:50)

For this exam, you may use a calculator and one 8.5” x 11” double-sided page of notes. All other
electronic devices (e.g., cellular phones, laptops, tablets) are prohibited. If you have a cellular
phone, please turn it off prior to the start of the exam to avoid distracting other students.

The exam contains 4 questions for a total of 100 points. Please answer the questions in the spaces
provided. If you need additional space, use the back of the page on which the question is written
and clearly indicate that you have done so.

Please note that Question 4 has three parts, but you are only required to complete two of the
three parts. You may complete all three parts for up to 10 points of extra credit. If you do so,
please clearly indicate which part is the extra one—I will assume it is part (c) if you mark
none of them.

Note also that your solutions to Question 4 will be short sequences of code, not subroutines. You
do not have to write any code to deal with the stack when solving Question 4.

You will be provided with seven pages (4 double-sided sheets) of reference material for the
exam: a list of the x86 instructions and condition codes we have covered thus far, a description
of subroutine calling conventions, and a list of the PIC 16F1829 instructions we have covered
thus far. You do not have to submit these pages when you turn in your exam.

You will have 50 minutes to complete this exam.

Q1: Multiple choice / 16
Q2: Reading PIC assembly / 16
Q3: Subroutines;

HLL à assembly
 / 28

Q4: Conditional instructions / 40
TOTAL SCORE / 100

EXTRA CREDIT / 10

 2

1. (16 points, 4 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

Please note that all of the multiple choice questions deal with PIC 16F1829 instructions.

a. Which of the following instructions can always be used to complement the working register,

W? (Note: remember that a complement operation simply flips all the bits of a register—it is
not the same as negating a register.)

i. comf x, W

ii. addlw -1

iii. sublw 0

iv. xorlw 0xFF

v. iorwf x, W

b. Which of the following code snippets will jump to the label L if x = 0x01?

A. btfss x, 0
 goto L

B. btfsc x, 7

goto L

C. decfsz x, F
goto L

D. incfsz x, F
goto L

i. Only A

ii. Only D

iii. A and B

iv. B and C

v. A, B, and C

 3

1 (continued)
c. Which of the following instructions will set the carry bit (C) to 1 if the file register x is equal

to 0xF0, the working register is equal to 0x20, and the carry bit is initially 0?

A. subwf x, F

B. lslf x, F

C. rrf x, F

D. addwf x, F

i. A and B

ii. B and C

iii. A, B, and C

iv. A, B, and D

v. A, B, C, and D

d. Which of the following instructions has the same effect as rotating a file register, x, by four
bits, without including the carry?

i. rrf x, F

ii. rlf x, F

iii. lslf x, F

iv. asrf x, F

v. swapf x, F

 4

2. (16 points) Reading PIC assembly
Show the result of each PIC 16F1829 instruction in the sequences below. Be sure to show the
state of the carry (C) bit for any shift or rotate operations. You may assume C is initially 0.
a. cblock 0x70

x
 endc

clrf x

comf x, W

sublw 0x10

incf x, F

lslf x, F

iorwf x, F

xorlw 0x3C

addwf x, W

 5

3. (28 points) Subroutines; HLL à assembly
The following questions (parts a-c) deal with the register and memory contents shown below.
Note that:

• These values represent the state of some registers and memory locations immediately
after the stack frame has been set up for the current function.

• The entire stack frame for the current function is shown, but there may be some
additional data stored in the given address range—do not assume that the values shown in
memory represent only the contents of the current stack frame.

• For parts a-c of this problem, you can assume that the stack frame for the current function
starts at address 0x12580020.

EAX: 0x0000ABBA
EBX: 0x00001400
ECX: 0x09090909
EDX: 0xFF000000
ESI: 0x11340550
EDI: 0x11340590
ESP: 0x12580008
EBP: 0x12580014

Address
0x12580000 0x00000005
0x12580004 0xCAE11600
0x12580008 0x09090909
0x1258000C 0x00001400
0x12580010 0x00000000
0x12580014 0x12580040
0x12580018 0x31700050
0x1258001C 0xFF000000
0x12580020 0x0000ABBA

a. (5 points) Assuming each argument uses 4 bytes, how many arguments does this function
take? Explain your answer.

b. (4 points) Can you determine how many bytes of data the function called before the current

function uses for local variables and saved registers? If so, explain how many bytes that
function uses; if not, explain why not.

 6

3 (continued)
c. (4 points) If we assume that the function uses the stack to save every register it overwrites,

what registers does this function overwrite? Explain your answer.

d. (15 points) A partially completed x86 function is written below. Complete the function by
writing the appropriate instructions in the blank spaces provided. The comments next to each
blank or instruction describe the purpose of that instruction. Assume that the function takes
two arguments (v1 and v2, in that order) and contains a single local integer variable, x.

f PROC ; Start of function f
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp

 sub esp, 4 ; Create space on stack for x

 mov ebx, DWORD PTR 8[ebp] ; ebx = v1

 _____________________________ ; ebx = v1 + v2

 _____________________________ ; x = ebx = v1 + v2 (copy ebx
 ; to memory location for x)
 sra ebx, 2 ; ebx = ebx >> 2 = x >> 2

 _____________________________ ; ebx = ebx + x = (x >> 4) + x

 _____________________________ ; Clear space allocated for
 ; local variable
 pop ebp ; Restore ebp

 _____________________________ ; Return from subroutine
f ENDP

 7

e. (40 points) Conditional instructions
For each part of this problem, write a short x86 code sequence that performs the specified
operation. CHOOSE ANY TWO OF THE THREE PARTS and fill in the space provided with
appropriate code. You may complete all three parts for up to 10 points of extra credit, but
must clearly indicate which part is the extra one—I will assume it is part (c) if you mark
none of them.

Note also that your solutions to this question will be short sequences of code, not subroutines.
You do not have to write any code to deal with the stack when solving these problems.

a. Implement the following conditional statement. You may assume that “X” and “Y” refer to

16-bit variables stored in memory, which can be directly accessed using those names (for
example, MOV AX, X would move the contents of variable “X” to the register AX). Your
solution should not modify AX or BX.

if (X < 10) {
 Y = X + AX;
}
else if (Y > BX) {
 X = Y – AX;
}
else {
 X = Y * 4;
 Y = X / 4;
}

 8

4 (continued)
b. Implement the following loop. As in part (a), assume “X” and “Y” are 16-bit variables in

memory that can be accessed by name. Assume that ARR is an array of 32-bit values, and that
the loop does not go outside the bounds of the array. The starting address of this array is in
the register SI when the loop starts—you can use that register to help you access values
within the array. Your solution should not modify X, Y, or EAX.

for (i = X; i < Y; i = i + 3) {
 ARR[i+1] = ARR[i] + ARR[i+2];
 ARR[i] = ARR[i+2] – EAX;
}

 9

4 (continued)
c. Implement the following loop. As in part (a), assume “X” and “Y” are 16-bit variables in

memory that can be accessed by name. Recall that a while loop is a more general type of
loop than the for loop seen in part (b)—a while loop simply repeats the loop body as long as
the condition tested at the beginning of the loop is true. Your solution should not modify AX
or BX.

while ((X < AX) || (Y > BX)) {

X = X - Z;
Y = Y + X;

}

