
 1

16.317: Microprocessor Systems Design I
Spring 2015

Exam 2 Solution

1. (16 points, 4 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Which of the following statements about interrupts and exceptions are true?

A. If an interrupt occurs, the program must use its next instruction to call the interrupt

service routine (ISR).

B. In a system where multiple devices share a single interrupt line, the interrupt service
routine can poll all external devices to determine which device caused an interrupt.

C. Only the instruction pointer and stack pointer are saved when an interrupt occurs on

an x86 processor.

D. An interrupt vector is the first instruction of an interrupt service routine.

i. Only A

ii. Only B

iii. A and C

iv. B and D

v. All of the above (A, B, C, and D)

b. If a file register, x, is set to 0x01, what is the result of the instruction comf x, W?

i. W = 0xFF

ii. x = 0xFF

iii. W = 0xFE

iv. x = 0xFE

 2

1 (continued)
c. Which of the following instructions will set the carry bit (C) to 1 if the file register x is equal

to 0xFF, the working register is equal to 0x01, and the carry bit is initially 0?

A. addwf x, F

B. lslf x, F

C. rrf x, F

D. bsf x, 0

i. Only A

ii. Only B

iii. A and B

iv. A, B, and C

v. A, B, C, and D

d. Which of the following instructions can always be used to flip (in other words, change 0s to
1s and 1s to 0s) the lower four bits of the working register, W, while leaving the upper four
bits of the register unchanged?

i. clrw

ii. sublw 0x0F

iii. iorlw 0xF0

iv. xorlw 0x0F

v. andlw 0xF0

 3

2. (16 points) Reading PIC assembly
Show the result of each PIC 16F1829 instruction in the sequences below. Be sure to show the
state of the carry (C) bit for any shift or rotate operations.
a. cblock 0x70

x
 endc

movlw 0xC6 W = 0xC6

addlw 0xFD W = W + 0xFD = 0xC6 + 0xFD = 0xC3

movwf x x = 0xC3

swapf x, W Swap nibbles of x and store result in W

 à W = 0x3C

iorwf x, W W = x OR W = 0xC3 OR 0x3C = 0xFF

asrf x, F x = x >> 1 (keep sign intact)

 = 0xC3 >> 1 = 1100 0011 >> 1

 = 1110 0001 = 0xE1

 C = bit shifted out = 1

btfsc STATUS, C Skip next inst. if C == 0 à don’t skip

subwf x, F x = x – W = 0xE1 – 0xFF = 0xE2

 Since borrow is needed, C = 0

 4

3. (28 points) Subroutines; HLL à assembly
The following questions deal with the register and memory contents shown below. Note that:

• These values represent the state of some registers and memory locations immediately
after the stack frame has been set up for the current function.

• The entire stack frame for the current function is shown, but there may be some
additional data stored in the given address range—do not assume that the values shown in
memory represent only the contents of the current stack frame.

• The last four instructions executed before entering the body of the current function
(which are not the last four instructions executed to set up the stack frame) are:

push edx (original exam had typo: registers out of
push ecx order à ebx, ecx, then edx)
push ebx
call f

EAX: 0x0000ABBA
EBX: 0x00001400
ECX: 0x09090909
EDX: 0xFF000000
ESI: 0x11340550
EDI: 0x11340590
ESP: 0x40120154

Address
0x40120150 0x00000005
0x40120154 0x0000000A
0x40120158 0xFFFF0000
0x4012015C 0x40120200
0x40120160 0x3170F000
0x40120164 0x00001400
0x40120168 0x09090909
0x4012016C 0xFF000000
0x40120170 0x192610AA

a. (5 points) What is the return address for this function? Explain your answer.

Solution: Knowing the instructions executed before the function call can help you find the return
address. We see that the values of the function arguments (edx, ecx, and ebx) are on the stack
at addresses 0x4012016C, 0x40120168, and 0x40120164, respectively. The next value in the
stack therefore must be the return address, which is pushed when the call instruction is executed.
That address is the value stored at address 0x40120160: 0x3170F000.

b. (4 points) What value does the base pointer (EBP) hold in this function? Explain your

answer.

Solution: The base pointer points to the location just above the saved return address—the
location where the previous function’s base pointer is stored. Since the return address is stored
at 0x40120160, the base pointer must hold the next address: 0x4012015C.

 5

3 (continued)
c. (4 points) If we assume that each local variable uses four bytes, how many local variables are

declared in this function? Explain your answer.

Solution: We know that the top of the stack is at address 0x40120154, since we’re given the
value of ESP. The local variables are stored between the top of the stack and the old base
pointer (which is at 0x4012015C, as discussed in (b)), so there are 2 local variables stored in
those 8 bytes.

(Note: The problem description is sufficiently vague that you could argue you can’t solve it, as
you don’t know how many registers are saved as part of this function.)

d. (15 points) A partially completed x86 function is written below. Complete the function by
writing the appropriate instructions in the blank spaces provided. The comments next to each
blank or instruction describe the purpose of that instruction. Assume that the function takes
one argument, a1, and contains one local integer variable, v1.

f PROC ; Start of function f
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp

 sub esp, 4 ; Create space on stack for v1
 ; and v2 (typo in exam)
 mov eax, DWORD PTR 8[ebp] ; eax = a1

 add eax, 10 ; eax = eax + 10 = a1 + 10

 mov -4[ebp], eax ; v1 = eax = a1 + 10 (copy eax
 ; to memory location for v1)

 sub -4[ebp], 20 ; v1 = v1 – 20 = a1 - 10

 idiv DWORD PTR -4[ebp] ; eax = eax / v1
 ; = (a1 + 10) / (a1 – 10)
 ; (use signed division; ignore
 ; remainder)

 mov esp, ebp ; Clear space allocated for
 ; local variable
 pop ebp ; Restore ebp

 ret ; Return from subroutine
f ENDP

 6

4. (40 points) Conditional instructions
For each part of this problem, write a short x86 code sequence that performs the specified
operation. CHOOSE ANY TWO OF THE THREE PARTS and fill in the space provided with
appropriate code. You may complete all three parts for up to 10 points of extra credit, but
must clearly indicate which part is the extra one—I will assume it is part (c) if you mark
none of them.

Note also that your solutions to this question will be short sequences of code, not subroutines.
You do not have to write any code to deal with the stack when solving these problems.

a. Implement the following conditional statement. You may assume that “X”, “Y”, and “Z” refer

to 16-bit variables stored in memory, which can be directly accessed using those names (for
example, MOV AX, X would move the contents of variable “X” to the register AX).

if ((AX > 10) || (BX < 30) {
 X = AX + BX;
 if (X == Y)
 Z = 0;
 else
 Z = 1;
}
else
 Z = 2;

Solution: Other solutions may be valid

 CMP AX, 10
 JG if ; Jump to outer if case if
 CMP BX, 30 ; AX > 10 or BX < 30
 JL if
 MOV Z, 2 ; Outer else case: Z = 2
 JMP done ; Skip else case
if:
 MOV X, AX ; X = AX
 ADD X, BX ; X = AX + BX
 MOV Y, DX ; Set DX = Y for compare
 CMP X, DX ; Jump to else case if
 JNE z1 ; X != Y
 MOV Z, 0 ; Inner if case: Z = 0
 JMP done ; Skip inner else case
 MOV Z, 1 ; Inner else case: Z = 1
done: ; End of code

 7

4 (continued)
b. Implement the following loop. Assume that ARR is an array of twenty 16-bit values. The

starting address of this array is in the register SI when the loop starts—you can use that
register to help you access values within the array.

for (i = 19; i > 0; i = i - 1) {
 ARR[i] = ARR[i-1] - AX;
 AX = ARR[i-1] + 0x1234;
}

Solution: Other solutions may be valid.

 MOV CX, 19 ; Initialize loop counter (CX is i)
L: MOV BX, CX
 DEC BX ; BX = CX – 1 = i – 1
 MOV DX, [SI+2*BX] ; DX = ARR[i-1]
 MOV [SI+2*CX], DX ; ARR[i] = DX = ARR[i-1]
 SUB [SI+2*CX], AX ; ARR[i] = ARR[i-1] – AX
 MOV AX, DX ; AX = DX = ARR[i-1]
 ADD AX, 0x1234 ; AX = ARR[i-1] + 0x1234
 DEC CX ; CX = i = i – 1
 JNZ L ; Return to start of loop

 8

4 (continued)
c. Implement the following loop. As in part (a), assume “X”, “Y”, and “Z” are 16-bit variables

in memory that can be accessed by name. Recall that a while loop is a more general type of
loop than the for loop seen in part (b)—a while loop simply repeats the loop body as long as
the condition tested at the beginning of the loop is true.

while (Y != X) {

Y = X – AX;
 X = Z + AX;
 Z = Z – 2;
}

Solution: Other solutions may be valid.

L: MOV DX, X ; Set DX = X for compare
 CMP Y, DX ; Exit loop if Y == X
 JE done
 MOV Y, DX ; Y = DX = X
 SUB Y, AX ; Y = X – AX
 MOV BX, Z ; BX = Z
 MOV X, BX ; X = BX = Z
 ADD X, AX ; X = Z + AX
 SUB Z, 2 ; Z = Z – 2
 JMP L ; Return to start of loop
done: ; End of code

