16.317: Microprocessor Systems Design I

Spring 2015

Exam 1 February 20, 2015

Name: ID #:

For this exam, you may use a calculator and one 8.5" x 11" double-sided page of notes. All other electronic devices (e.g., cellular phones, laptops, PDAs) are prohibited. If you have a cellular phone, please turn it off prior to the start of the exam to avoid distracting other students.

The exam contains 5 questions. The first four questions will give you a total of 100 points; the fifth question is an extra credit problem worth 10 points. In order to receive any extra credit for Question 5, you must clearly demonstrate that you have made a significant effort to solve each of the first four questions.

Please answer the questions in the spaces provided. If you need additional space, use the back of the page on which the question is written and clearly indicate that you have done so.

You will be provided with three pages (2 double-sided sheets) of reference material for the exam: a list of the x86 instructions and condition codes we have covered thus far. You do not have to submit these pages when you turn in your exam.

You will have 50 minutes to complete this exam.

Q1: Multiple choice	/ 20
Q2: Data transfers and	/ 30
memory addressing	7 30
Q3: Arithmetic instructions	/ 25
Q4: Logical instructions	/ 25
TOTAL SCORE	/ 100
Q5: EXTRA CREDIT	/ 10

1. (20 points, 5 points per part) *Multiple choice*

For each of the multiple choice questions below, clearly indicate your response by circling or underlining the single choice you think best answers the question.

a. Given AL = 3Ch and CF = 1, what is the final result of the instruction RCR AL, 3?

- i. AL = 27h, CF = 1
 ii. AL = 87h, CF = 1
 iii. AL = E4h, CF = 1
 iv. AL = E1h, CF = 1
 v. AL = 07h, CF = 1
- b. Assuming A, B, C, and D are all signed integers, what compound condition does the following instruction sequence test?

MOV ADD CMP SETLI MOV CMP	
SETG	
OR	BL, BH
i. (C	<= B) (D > A)
ii. (C	<= A) (D > A)
iii. (C	<= A + B) (D > A)
iv. (C	< A + B) (D > A)
v. (C	<= A + B) (D + B > A)

1 (continued)

c. If AX = OFFOh, which of the following instructions will set CF = 1?

A.	BT	AX,	3
В.	BTR	AX,	4
C.	BTS	AX,	15
D.	BTC	AX,	12

- i. Only A
- ii. Only B
- iii. A and D
- iv. B and C
- v. All of the above (A, B, C, D)

d. If AX = 0808H, which of the following choices correctly shows the results of performing the two bit scan instructions (BSF and BSR) on this register?

i.	BSF BSR	DX, DX,			-		0008h 0008h
ii.	BSF BSR	DX, DX,					0003h 0004h
iii.	BSF BSR	DX, DX,			-		0003h 000Bh
iv.	BSF BSR	DX, DX,					0003h 000Bh
v.	BSF BSR	DX, DX,			-		changed changed

2. (30 points) Data transfers and memory addressing

For each data transfer instruction in the sequence shown below, list <u>all</u> changed registers and/or memory locations and their final values. If memory is changed, be sure to explicitly list <u>all</u> <u>changed bytes</u>. Also, indicate if each instruction performs an aligned memory access, an unaligned memory access, or no memory access at all.

<u>Initial state:</u> EAX: 0000000h EBX: FFFFFFAh ECX: 0000003h EDX: 0000FE98h ESI: 00010480h EDI: 00010470h	AddressLoHi10470h0218201510474h1055AA1210478h47FEDC111047Ch9359317010480h56DDBAEE10484h0F23411910488h49647A0F
Instructions:	
MOV EAX, [ESI+EBX]	<u>Aligned?</u> Yes No Not a memory access
XCHG AX, [EDI+ECX*2]	<u>Aligned?</u> Yes No Not a memory access
MOVSX EDX, WORD PTR [ESI+ECX]	<u>Aligned?</u> Yes No Not a memory access
LEA SI, [DI+BX+0003h]	<u>Aligned?</u> Yes No Not a memory access
MOVZX AX, BYTE PTR [ESI+0002h]	Aligned? Yes No Not a memory access

3. (25 points) Arithmetic instructions

For each instruction in the sequence shown below, list <u>all</u> changed registers and/or memory locations and their new values. If memory is changed, be sure to explicitly list <u>all changed</u> <u>bytes</u>. Where appropriate, you should also list the state of the carry flag (CF).

EBX: 00 ECX: 00 EDX: 00 CF: 1	<u>tate:</u> 0000010h 0005195h 0001006h 000A197h 021800h	Address 21820h 21824h 21828h 2182Ch 21830h 21834h	Lo 99 83 05 20 05 41	07 00 C1 40 00 82	08 01 71 33 AB 11	Hi F0 61 31 80 0F 55
Instruct	ions:					
ADD	DX, BX					
DEC	AL					
DIV	CL					

SUB AX, [ESI+0034h]

NEG CX

4. (25 points) *Logical instructions*

For each instruction in the sequence shown below, list <u>all</u> changed registers and/or memory locations and their new values. If memory is changed, be sure to explicitly list <u>all changed</u> <u>bytes</u>. Where appropriate, you should also list the state of the carry flag (CF).

<u>Initial state:</u> EAX: 000009Bh EBX: 0000445Ch ECX: 0000005h		Address 72300h 72304h	Lo C0 10	02 15	5A		
EDX: 00 CF: 0		3Ch	72308h 7230Ch 72310h	89 20 04	01 40 08	05 AC 05	B1 DC 83
Instructi	ons:						
OR	AX,	BX					
SHL	AX,	5					
NOT	BL						
SAR	AX,	3					
ROL	DX,	5					

5. (10 points) *Extra credit*

Complete the code snippet below by writing the appropriate x86 instruction into each of the blank spaces. The purpose of each instruction is described in a comment to the right of the blank.

 ; Move an unsigned word ; from address 1000h ; and extend it to fill ; EAX
 ; Set ESI equal to the ; sum of EAX and EBX, ; in one instruction
 ; Move the upper word of ; ECX into the lower ; word of ECX ; without losing bits
; Use two instructions ; transfer the lower ; word of ECX to the ; address stored in ESI ; if that lower word ; represents a negative ; signed value
 ; Divide CX by 32 and ; store the result in ; CX using a single ; instruction
 ; Clear the lower 12 ; bits of EAX, but ; don't change any ; other bits
 ; Determine the position ; of the leftmost (most ; significant) nonzero ; bit in EAX, and store ; that position in DL
 ; Use two instructions ; and the previous ; instruction's result ; to set DH to 1 if the ; leftmost nonzero bit ; in EAX is in the left ; half of that register