
 1

16.317: Microprocessor Systems Design I
Spring 2014

Exam 3 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Which of the following operations can be done using only a single PIC16F1829 instruction?

A. Two’s complement negation of an 8-bit value (in other words, X = -X)

B. Subtract a constant value from the working register, W

C. One’s complement (in other words, flip all bits) of the working register, W

D. Rotate an 8-bit value to the right by one bit without rotating through the carry bit

i. Only A

ii. Only B

iii. A and D

iv. B and C

v. All four operations (A, B, C, and D)

 2

1 (continued)
b. Under what conditions will the following code jump to the label L1?

btfsc STATUS, C
goto END

 movlw 0x34
 subwf x, F
 btfss STATUS, Z
 goto L1
END:

i. C = 0

ii. C = 0 and x ≠ 0x34

iii. C = 0 and x = 0x34

iv. C = 1

v. C = 1 and x ≠ 0x34

c. You are given the following short PIC16F1829 assembly function:

F: movf PORTC, W
 andlw B'00000010'
 addwf PCL, F
 retlw B'00001111'
 retlw B'00111100'
 retlw B'11110000'
 retlw B'11111111'

If PORTC = 0x0F, what value is in the working register when this function returns?

i. B'00000010'

ii. B'00001111'

iii. B'00111100'

iv. B'11110000'

v. B'11111111'

 3

1 (continued)

d. Circle one (or more) of the choices below that you feel best “answers” this “question.”

i. “Thanks for the free points.”

ii. “I don’t REALLY have to answer the last three questions, do I?”

iii. “It’s about time we have a test that doesn’t start at 8:00 AM.”

iv. None of the above.

Any of the above are “correct.”

 4

2. (16 points) Reading PIC assembly
Show the result of each PIC 16F1829 instruction in the sequences below. Be sure to show not
only the state of updated registers, but also the carry (C) and zero (Z) bits.

cblock 0x70
x

 endc

clrf x x = 0x00

incf x, F x = x + 1 = 0x01

movlw 0x0F W = 0x0F

xorwf x, F x = x XOR W = 0x01 XOR 0x0F = 0x0E

swapf x, F Swap nibbles of x x = 0xE0

comf x, W W = ~x = ~0xE0 = 0x1F

btfss x, 1 Skip next instruction if bit 1 of x = 1
 Since x = 0xE0 = 0x11100000, do not skip

asrf x, F x = x >> 1 (keep sign) = 0xE0 >> 1 = 0xF0
 C = last bit shifted out = 0

 5

3. (24 points) PIC C programming
Complete each short function by writing the appropriate line of C code into each of the blank
spaces. The purpose of each line is described in a comment to the right of the blank.

a. (12 points)
Complete the interrupt service routine below so that if a timer interrupt has occurred, the LEDs
will be updated to show the next value in the pattern stored in the array st[], going back to the
first value (0b0001) after showing the eighth (0b1001). If a switch interrupt has occurred,
clear all LEDs and reset to the initial state. Assume the LEDs are wired to Port C, as on the
development board used in HW 6, and that “SWITCH” and “DOWN” are appropriately defined.

Assume the use of the following global variables—st[] holds the list of values to be displayed
on the LEDs, while i is the current index into that array. Assume i initially holds the value 0:
unsigned char st[8] = {0b0001, 0b0010, 0b0100, 0b0101,

 0b1010, 0b0100, 0b1000, 0b1001};
unsigned char i;

void interrupt ISR(void) {

 if (IOCAF) { // SW1 was pressed

 IOCAF = 0; // Clear flag in software

 __delay_ms(5); // Delay for debouncing
 if (SWITCH == DOWN) { // If switch still pressed

 LATC = 0; // clear LEDs

 i = 0; // and reset i

 }
 }

 if (INTCONbits.T0IF) { // Timer 0 interrupt

 INTCONbits.T0IF = 0; // Clear flag in software

 LATC = st[i]; // Update LEDs to show
 // current st[] value

 i++; // Increment i

 if (i > 7) // If i exceeds max index

 i = 0; // reset i

 }
}

 6

3 (continued)
b. (12 points)
This function performs an analog to digital conversion and uses the least significant bits of the
result, which are stored in ADRESL, to determine the operation of the program as follows:

• If the lowest two bits are 01, toggle the lowest LED, which is wired to the least
significant bit (bit 0) of Port C.

o That bit can be accessed either through the PORTC or LATC register; to access bit
0, use PORTCbits.PORTC0 or LATCbits.LATC0

• If the lowest two bits are 10, toggle the second LED, which is wired to bit 1 of Port C.
• If the lowest two bits are 11, turn both the first and second LEDs on.

Assume the ADC is configured to produce a right-justified result, so the lowest bits of ADRESL
are the least significant bits of the conversion result.

void read_adc(void) {
 unsigned char lobits; // Variable to hold lowest 2

// bits of ADC result
 __delay_us(5); // Wait for ADC cap to settle

 GO = 1; // Start conversion

 while (GO) continue; // Wait until conversion done

 lobits = ADRESL & 0x03 // lobits = lowest two bits

// of ADC result

 if (lobits == 0b01) { // In this case, toggle
 LATC = LATC ^ 0x01; // lowest LED
 }
 else if (lobits == 0b10) { // In this case, toggle
 LATC = LATC ^ 0x02; // second LED
 }
 else if (lobits == 0b11) { // In this case, turn first &
 LATC = LATC | 0x03; // second LEDs on
 }
}

 7

4. (40 points, 20 points per part) PIC assembly programming
For each of the following complex operations, write a sequence of PIC 16F1829 instructions—
not C code—that performs an equivalent operation. CHOOSE ANY TWO OF THE THREE
PARTS and fill in the space provided with appropriate code. You may complete all three parts
for up to 10 points of extra credit, but must clearly indicate which part is the extra one—I
will assume it is part (c) if you mark none of them.
Assume that 8-bit variables “TEMP” and “COUNT” have been defined for cases where you may
need extra variables.

Finally, please note that you are not required to write comments describing each instruction. You
are certainly welcome to do so if you feel it will make your solution clearer to the instructor.

a. You are given two 16-bit values, X and Y. You can access individual bytes within each
value—“X” contains bytes XH and XL (XL is the least-significant byte) and “Y” contains
bytes YH and YL.

Write a sequence of instructions that jumps to location “L1” if X and Y are equal.

Solution:
 movf XL, W ; Compare low bytes
 subwf YL, W
 btfss STATUS, Z ; If result is non-zero, don’t check high bytes
 goto skip
 movf XH, W ; Compare high bytes
 subwfb YH, W
 btfsc STATUS, Z ; If result is zero, jump; otherwise, skip
 goto L1
skip: ... ; End of sequence

 8

4 (continued)
b. Given two 8-bit variables, X and N, clear the lowest N bits of X (i.e., set the bits to 0). For

example:

• If X = 0x0F and N = 0x02, clear the lowest two bits—bits 0 and 1.
o X = 0x0F = 0000 11112 originally X will change to 0000 11002 = 0x0C

• If X = 0xFF and N = 0x06, clear the lowest six bits—bits 0 through 5.
o X = 0xFF = 1111 11112 originally X will change to 1100 00002 = 0xC0

Note that:

• Since X and N are not constants, you cannot use both values together in any PIC
instruction (for example, btfsc X, N is not a valid instruction).

• Your code should not modify N. (Original had typo saying you should not modify X.)

Solution:
 movf N, W ; COUNT = N
 movwf COUNT
 movlw 0xFE ; Initial bit mask for clearing—will start with 0
 ; only in lowest bit position
L: andwf x, F ; Clear appropriate bit(s) of x
 movwf TEMP ; TEMP = bit mask
 lslf TEMP, W ; W = shifted bit mask (move everything to
 ; left, shifting 0 into lowest position)
 decfsz COUNT, F ; Decrement loop counter and return to
 goto L ; start of loop if result is not 0

 9

4 (continued)

c. You are given two 16-bit values, X and Y, and an 8 bit value, ZL. You can access individual
bytes within each value—“X” contains bytes XH and XL (XL is the least-significant byte)
and “Y” contains bytes YH and YL.

Perform a 16-bit logical left shift: X = Y << ZL. (Note that, because the shift amount is no
greater than 15, a single byte is sufficient to hold that value.) Do not change Y or ZL when
performing this operation.

Solution:

movf YL, W ; Copy YL to XL
 movwf XL
 movf YH, W ; Copy YH to XH
 movwf XH
 movf ZL, W ; Copy ZL to TEMP
 movwf COUNT
L: lslf XL, F ; Shift upper byte (C = bit to be shifted into XL)
 rlf XH, F ; Shift lower byte
 decfsz COUNT, F ; Decrement loop counter and return to start
 goto L ; of loop if there are more iterations.

	Spring 2014
	Exam 3 Solution

