
16.317: Microprocessor Systems Design I
Spring 2014

Exam 2 Solution

1. (16 points, 4 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Which of the following statements about interrupts and exceptions are true?

A. An interrupt vector is a function used to handle an interrupt.

B. When an interrupt occurs, the processor saves all processor state (registers and flags),

stores the return address (the address of the next instruction) on the stack, and then
actually handles the interrupt.

C. Exceptions and interrupts both cause the currently running program to pause until the
interrupt handling is complete.

D. If multiple devices share the same interrupt input line, the only possible way to

determine which one caused an interrupt is a software solution in which a function
checks each device.

i. Only A

ii. Only B

iii. A and D

iv. B and C

v. B, C, and D

b. Which of the following PIC instructions allows you to subtract the constant value 3 from the
current contents of the working register?

i. sublw 3

ii. subwf 3, W

iii. subwfc 3, W

iv. addlw -3

c. Given a file register x, which of the following PIC instructions will set the least significant

bit of x to 0 if, initially, x = 0x0F and C = 0?

A. bcf x, 0

B. lslf x, F

C. rlf x, F

D. bsf x, 0

i. Only A

ii. A and B

iii. A, B, and C

iv. A, B, C, and D

v. B, C, and D

d. Which of the following instructions can always be used to clear the lowest four bits of the
working register, W, while leaving the upper four bits of the register unchanged?

i. clrw

ii. sublw 0x0F

iii. iorlw 0xF0

iv. xorlw 0x0F

v. andlw 0xF0

2. (16 points) Rotate, bit test, and bit scan instructions
For each instruction in the sequence shown below, list all changed registers and/or memory
locations and their new values. If memory is changed, be sure to explicitly list all changed
bytes. Where appropriate, you should also list the state of the carry flag (CF) and zero flag (ZF).

Initial state:
EAX: 000000E7h
EBX: 00000033h
ECX: 00000002h
EDX: 00000000h
CF: 0
DS: 7230h

Address Lo Hi
72300h C0 00 02 10
72304h 10 10 15 5A
72308h 89 01 05 B1
7230Ch 20 40 AC DC
72310h 04 08 05 83

Instructions:
ROR AL, CL

 AL = AL rotated right by CL = E7h rotated right by 2
 = 1110 01112 rotated right 2 = 1111 10012 = F9h
 CF = last bit rotated = 1

BTC BL, 1

 CF = bit 1 of BL BL = 33h = 0011 00112 CF = 1
 Complement bit 1 of BL BL = 0011 00012 31h

RCR AL, 4

 AL = AL rotated right through carry by 4
 (AL,CF) = 1111 1001 12
 After rotate, (AL,CF) = 0011 1111 12 AL = 3Fh, CF = 1

BSR DX, BX

 Since BX is not 0, ZF = 1
 DX = position of first non-zero bit in BX, scanning from MSB
 to LSB
 BX = 31h = 001100012 DX = 0005h

 5

3. (32 points) Subroutines; HLL assembly
The following questions deal with the simple C function shown below, which takes three integer
arguments (v1, v2, and v3), contains one local variable (x) and returns the value shown:
 int f(int v1, int v2, int v3) {
 int x = v1 + v2;
 return (x + v3) * (x – v3);
 }

a. (14 points) Draw the stack frame for this function if it is called with 16, 317, and 2014 as its

arguments (in other words, a program contains the function call f(16, 317, 2014)). Be
as specific as possible—in particular:

• Show all known values—if, for example, the argument v1 is equal to 20, write the value
20 in your diagram, not the argument name v1.

• For all arguments or variables with unknown values, write the argument or variable name.

• Clearly indicate where the stack pointer (esp) and base pointer (ebp) point in the current
stack frame. You do not need to know the values of these registers.

Assume the function saves the register ebx on the stack, since it overwrites that register.

Solution: As the diagram below shows, the stack frame is set up as follows:

• Arguments are passed first, in reverse order.

• The return address (“saved EIP”) of the function is pushed when the function is called.

• The old value of the base pointer (“old EBP”) is pushed next.

• Space for local variable x is then created.

• The register ebx is saved last.

• After the stack frame is set up, EBP should point to the saved copy of its previous value;
while ESP points to the top value on the stack (the saved version of EBX)

High addresses

 v3 = 2014
 v2 = 317
 v1 = 16
 Saved EIP
EBP Old EBP
 x
ESP ebx

Low addresses

 6

3 (continued)
b. (18 points) A partially completed x86 assembly version of this function is written below.

Complete the function by writing the appropriate instructions in the blank spaces provided.
The comments next to each blank or instruction describe the purpose of that instruction.

The C version of the function is provided below for your reference. Note that a variable of
type int is a 32-bit signed integer.

int f(int v1, int v2, int v3) {
 int x = v1 + v2;
 return (x + v3) * (x – v3);
 }

f PROC ; Start of function f
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp

 sub esp, 4 ; Create space on the stack for
 ; local variable x

 push ebx ; Save ebx on the stack

 mov ebx, 8[ebp] ; ebx = v1

 add ebx, 12[ebp] ; ebx = v1 + v2

 mov -4[ebp], ebx ; x = ebx = v1 + v2

 mov eax, ebx ; eax = ebx = x

 add eax, 16[ebp] ; eax = eax + v3 = x + v3

 sub ebx, 16[ebp] ; ebx = ebx – v3 = x – v3

 imul ebx ; (edx,eax) = eax * ebx
 ; = (x + v3) * (x – v3)

 pop ebx ; Restore ebx

 mov esp, ebp ; Clear space for x
 pop ebp ; Restore ebp
 ret ; Return from subroutine
f ENDP

 7

4. (36 points) Conditional instructions
For each part of this problem, write a short x86 code sequence that performs the specified
operation. CHOOSE ANY TWO OF THE THREE PARTS and fill in the space provided with
appropriate code. You may complete all three parts for up to 10 points of extra credit, but
must clearly indicate which part is the extra one—I will assume it is part (c) if you mark
none of them.

Note also that your solutions to this question will be short sequences of code, not subroutines.
You do not have to write any code to deal with the stack when solving these problems.

a. Implement the following conditional statement. You may assume that “X” and “Y” refer to

16-bit variables stored in memory, which can be directly accessed using those names (for
example, MOV AX, X would move the contents of variable “X” to the register AX).

if (X < AX) {
 Y = Y + 10;
}
else if (X > AX) {
 Y = X + 10;
}
else {
 Y = X;
}

Solution:
 CMP X, AX ; Compare X to AX—can use comparison results
 ; multiple times
 JL L1 ; If (X < AX), go to L1 (if case)
 JG L2 ; If (X > AX), go to L2 (else if case)
 MOV BX, X ; Else case: BX = X
 MOV Y, BX ; Y = BX = X
 JMP FIN ; Skip if and else if cases

L1: ADD Y, 10 ; If case: Y = Y + 10
 JMP FIN ; Skip else if case

L2: MOV BX, X ; Else if case: BX = X
 MOV Y, BX ; Y = BX = X
 ADD Y, 10 ; Y = X + 10

FIN: ... ; End of statement

 8

3 (continued)
b. Implement the following loop. Assume that ARR is an array of twenty-one 16-bit values. The

starting address of this array is in the register SI when the loop starts—you can use that
register to help you access values within the array.

for (i = 0; i < 21; i = i+3) {
 AX = ARR[i] + ARR[i+1];
 ARR[i+2] = AX + BX;
}

Solution:
 MOV CX, 0 ; CX = i = 0
L: CMP CX, 21 ; If i is not less than 21,
 JGE FIN ; loop is done—exit
 MOV AX, [SI+2*CX] ; AX = ARR[i]
 INC CX ; i = i + 1
 ADD AX, [SI+2*CX] ; AX = ARR[i] + ARR[i+1]
 INC CX ; i = i + 1 = original i + 2
 MOV [SI+2*CX], AX ; ARR[i+2] = AX
 ADD [SI+2*CX], BX ; ARR[i+2] = AX + BX
 JMP L ; Return to start of loop
FIN: ... ; End of loop

 9

3 (continued)
c. Implement the following conditional statement. As in part (a), assume “X” and “Y” are 16-bit

variables in memory that can be accessed by name. (Note: Make sure you carefully count the
parentheses to make sure you combine conditions correctly! Also, note that the || symbol
indicates a logical OR, and the && symbol indicates a logical AND.)

if (X < Y || BX == X || (AX < Y && BX > X)) {
 AX = AX + BX;
}

Solution:
 MOV DX, X ; DX = X
 CMP DX, Y ; If DX < Y,
 SETL CL ; CL = 1
 CMP BX, DX ; If BX == DX (BX == X)
 SETE CH ; CH = 1
 OR CL, CH ; CL = 1 if (X < Y || BX == X)
 CMP AX, Y ; If AX < Y,
 SETL DL ; DL = 1
 CMP BX, X ; If BX > X,
 SETG DH ; DH = 1
 AND DL, DH ; DL = 1 if (AX < Y && BX > X)
 OR CL, DL ; CL = 1 if (X < Y || BX == X ||
 ; (AX < Y && BX > X))
 JZ FIN ; Skip addition if CL == 0 (condition false)
 ADD AX, BX ; AX = AX + BX
FIN: ... ; End of statement

	Spring 2014
	Exam 2 Solution

