
16.317: Microprocessor Systems Design I
Spring 2014

Exam 1 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Which of the following statements about x86 real mode memory accesses are true?

A. By default, if an instruction that accesses memory does not explicitly specify a

segment, that instruction will access the data segment.

B. In an x86 processor, all memory accesses involving multiple bytes must be aligned.

C. To calculate a linear address in the data segment, add the 16-bit value in DS to the 16-
bit effective address. (For example, if DS = 1000h and the effective address is 2000h,
the linear address will be 3000h.)

i. None of the above

ii. Only A (2/5 points given)

iii. Only B (2/5 points given)

iv. A and B

v. B and C

b. If EAX = 10203040h and EBX = AABBCCDDh, which of the following instructions will

change EAX to 102030DDh and EBX to AABBCC40h?

i. XCHG EAX, EBX

ii. XCHG AX, BX

iii. XCHG AL, BL

iv. XCHG AH, BH

v. None of the above

 2

1 (continued)

c. If EAX = 00000003h and EBX = 00000005h, what will the result of the instruction
IMUL BL be?

i. EAX = 00000005h

ii. EAX = 0000000Fh

iii. EAX = 00000015h

iv. EAX = 0000FFF8h

v. EAX = 00000005h, EDX = 00000003h

d. Which of the following instructions will set CF = 1 if EAX = 0000F001h and EBX =
00001000h?

A. ADD AX, BX

B. SUB BX, AX

C. SHR AX, 1

D. SHL BX, 1

i. Only A

ii. Only D

iii. A and C

iv. B and D

v. A, B, and C

 3

2. (30 points) Data transfers and memory addressing
For each data transfer instruction shown below, list all changed registers and/or memory
locations and their final values. If memory is changed, be sure to explicitly list all changed
bytes. Also, indicate if each instruction performs an aligned memory access, an unaligned
memory access, or no memory access at all.

Initial state:
EAX: 00000000h
EBX: 00000002h
ECX: 00000001h
EDX: 00001FFEh
ESI: 0000F00Fh
EDI: 0000A000h
DS: 1245h
ES: 1046h

Address Lo Hi
12450h 02 17 20 14
12454h 16 31 70 AA
12458h BE CD FA 00
1245Ch 49 64 7A 0F
12460h FF 11 02 60
12464h 01 04 65 7F
12468h 99 30 88 78

Instructions:

MOV EAX, [BX+4*CX] Aligned? Yes No Not a memory access
 EA = BX + (4 * CX) = 0002h + (4 * 0001h) = 0006h
 SBA = 12450h (access DS)
 LA = SBA + EA = 12450h + 0006h = 12456h
 EAX = Double word @ 12456h = CDBEAA70h

MOV ES:[DI+8005h], DL Aligned? Yes No Not a memory access
 EA = DI + 8005h = A000h + 8005h = 12005h (EA is only 16 bits)
 SBA = 10460h (access ES)
 LA = SBA + EA = 10460h + 2005h = 12465h
 Byte @ 12465h = DL = FEh

LEA BX, [SI+0FF3h] Aligned? Yes No Not a memory access
 EA = SI + 0FF3h = F00Fh + 0FF3h = 10002h (EA is only 16 bits)
 BX = EA = 0002h

MOVSX EDX, BYTE PTR ES:[CX+2009h] Aligned? Yes No Not a memory access
 EA = CX + 2009h = 0001h + 2009h = 200Ah
 SBA = 10460h (access ES)
 LA = SBA + EA = 10460h + 200Ah = 1246Ah
 EDX = sign-extended byte @ 1246Ah = DL = FFFFFF88h

MOVZX EBX, WORD PTR [0009h] Aligned? Yes No Not a memory access
 EA = 0009h
 SBA = 12450h (access DS)
 LA = SBA + EA = 12450h + 0009h = 12459h
 EBX = zero-extended word @ 12459h = 0000FACDh

 4

3. (25 points) Arithmetic instructions

For each instruction in the sequence shown below, list all changed registers and/or memory
locations and their new values. If memory is changed, be sure to explicitly list all changed
bytes. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:
EAX: 00000014h
EBX: 0000FF08h
ECX: 00000003h
EDX: 00000004h
CF: 1
ESI: 00000008H
DS: 3170H

Address Lo Hi
31700H 04 07 08 00
31704H 83 00 01 01
31708H 05 01 71 31
3170CH 20 40 60 80
31710H 02 00 AB 0F
31714H 00 16 11 55

Instructions:
ADD CX, [SI]

 EA = SI = 0008h; SBA = 31700h (access DS)  LA = 31708h
 CX = CX + word at 31708h
 = 0003h + 0105h = 0108h
 CF = 0

SBB BX, AX

 BX = BX - AX - CF
 = FF08h - 0014h - 0 = FEF4h
 CF = 0

DEC BH

 BH = BH – 1 = FEh – 1 = FDh

IDIV BYTE PTR [0001h]

 EA = 0001h; SBA = 31700h (access DS)  LA = 31701h
 AL = AX / byte @ 31701h = 0014h / 07h = 20 / 7 = 2 = 02h
 AH = AX % byte @ 317071h (remainder) = 20 % 7 = 6 = 06h

NEG DX

 DX = -DX = -0004h = -(0000 0000 0000 01002)
 = 1111 1111 1111 10112 + 1
 = 1111 1111 1111 11002 = FFFCh

 5

4. (25 points) Logical instructions

For each instruction in the sequence shown below, list all changed registers and/or memory
locations and their new values. If memory is changed, be sure to explicitly list all changed
bytes. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:
EAX: 000000FFh
EBX: 00001172h
ECX: 00000005h
EDX: 0000F63Ch
CF: 0
DS: 7230h

Address Lo Hi
72300h C0 00 02 10
72304h 10 10 15 5A
72308h 89 01 05 B1
7230Ch 20 40 AC DC
72310h 04 08 05 83

Instructions:
AND BL, [07H]

 EA = SI = 0007h; SBA = 72300h (access DS)  LA = 72307h
 BL = BL AND byte @ 72307h = 72h AND 5Ah = 52h

XOR AL, BL

 AL = AL XOR BL = FFh XOR 52h = ADh

SAR AL, CL

 AL = AL >> CL = AL >> 5 (arithmetic shift—keep sign intact)
 = ADh >> 5 = 1010 11012 >> 5 = 1111 11012 = FDh
 CF = last bit shifted out = 0

SHL AL, 4

 AL = AL << 4
 = FDh << 4 = 1111 11012 << 4 = 1101 00002 = D0h
 CF = last bit shifted out = 1

NOT AL

 AL = ~AL (flip bits) = ~D0h = ~1101 00002 = 0010 11112 = 2Fh

 6

5. (10 points) Extra credit
Complete the code snippet below by writing the appropriate x86 instruction into each of the
blank spaces. The purpose of each instruction is described in a comment to the right of the blank.
You should assume the starting address of the data segment is appropriately set up for you.

MOV BX, [0000h] ; Load the first two
 ; bytes in the data
 ; segment into BX

LGS CX, [0002h] ; Use one instruction to
; load the next two
; bytes in the data
; segment into CX,
; and the two bytes
; after that into GS

SUB CX, BX ; Find the difference
 ; CX – BX, storing
 ; the result in CX

MOV AX, CX –or- ; Use two instructions
MOV AX, BX ; to take the new
 ; value in CX and
IMUL BX –or- ; multiply it by BX
IMUL CX ; Hint: the result may
(could use MUL ; not be in either
Instead of IMUL) ; of those registers

MOV GS:[0000h], AX ; Store all 32 bits of
; that result in the
; first four bytes of

MOV GS:[0002h], DX ; segment GS, using two
; instructions (least
; significant bits 1st)

AND BX, 0FFFh ; Clear the upper 4
; bits of BX, but don’t
; change any other bits
; (Clear = set to 0)

XOR BX, 000Fh ; Flip the lowest 4 bits
; of BX, but don’t

 ; change any other bits

MOV [CX+DI], BX ; Store BX into the data
; segment at the offset
; specified by the sum
; of DI and CX

	Spring 2014
	Exam 1 Solution

