
 1

16.317: Microprocessor Systems Design I
Spring 2013

Exam 2 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Which of the following values are stored in a function’s stack frame after the function has

been called (in other words, after the CALL instruction that calls the function has finished
executing)?

A. Function arguments
B. Local variables inside the function
C. The previous value of the base pointer (EBP)
D. The previous value of the instruction pointer (EIP)

i. A and C

ii. B and C

iii. A and D

iv. B and D

v. All of the above (A, B, C, and D)

 2

1 (continued)
b. Say a function contains the following variables:

int x, y;
double z;
char list[40];

Assume that a variable of type char holds 1 byte, a variable of type int holds 4 bytes, and a
variable of type double holds 8 bytes. Which of the following instructions correctly creates
enough space on the stack for all of the variables listed above? (Note: All constant values shown
below are in decimal, not hexadecimal.)

i. ADD ESP, 56

ii. SUB ESP, 56

iii. PUSHAD

iv. ADD EBP, 56

v. SUB EBP, 56

c. Which of the following types of values are not stored on the stack?

i. Function arguments

ii. Local variables

iii. Global variables

iv. Function return addresses

v. Registers saved inside a function, so that the original values can be restored at the end of
the function.

 3

1 (continued)
d. How many iterations does the following loop execute?

MOV CX, 0008H
MOV AX, 0000H

START: INC AX
 CMP AX, CX
 LOOPNE START

i. 2

ii. 3

iii. 4

iv. 6

v. 8

 4

2. (40 points) Protected mode memory accesses
Assume the 80386 is running in protected mode with the state given below. Note that each
memory location shown contains a segment descriptor. Also, please note that you cannot assume
the memory range shown contains the entire GDT and LDT. All values shown are in hex.
GDTR = 327201380027
LDTR = 0020
LDTR cache: base = 32720168
LDTR cache: limit = 003F

Memory Address
Base = 32720160
Limit = 0007

32720130

Base = 31700F00
Limit = 0A17

32720138
ES desc.

Base = 32720120
Limit = 0017

32720140

Base = 0A1B3200
Limit = FFFF

32720148

Base = 32720200
Limit = FFFF

32720150
SS desc.

DS = 0017
ES = 0001
SS = 0019
EDI = 31703509
EBP = 001A05EA

Memory Address
Base = 32720168
Limit = 003F

32720158

Base = 32720130
Limit = 0007

32720160

Base = FE0A1340
Limit = FFFF

32720168

Base = 32720100
Limit = 001F

32720170

Base = 3300C000
Limit = 02FF

32720178

What physical address does each of the following instructions access?

a. SETL BYTE PTR [DI+0200H]

Solution: To find a segment base address, look first at its selector—in this case, DS:
 DS = 0017H = 0000 0000 0001 01112  index = 2, TI = 1 (local), RPL = 3
Since the LDT starts at address 32720168, the descriptor at 32720178 (which has index 2 within
the LDT) describes the data segment. So, the physical address being accessed is:
 Seg. base + EA = 3300C000H + (DI+0200H) = 3300C000H + 3709H = 3300F709H

b. SUB CX, ES:[DI-8]

Solution: In this problem, the segment we need is ES, so we break down that selector:
ES = 0001H = 0000 0000 0000 00012  index = 0, TI = 0 (global), RPL = 1

Since the GDT starts at address 32720138, the descriptor at 32720138 (which has index 0 within
the GDT) describes this segment. So, the physical address being accessed is:

Seg. base + EA = 31700F00H + (DI-8) = 31700F00H + 3501H = 31704401H

 5

2 (continued)
c. SHL WORD PTR SS:[BP-4], 7

Solution: In this problem, the segment we need is SS, so we break down that selector:
SS = 0019H = 0000 0000 0001 10012  index = 3, TI = 0 (global), RPL = 1

Since the GDT starts at address 32720138, the descriptor at 32720150 (which has index 3 within
the GDT) describes this segment. So, the physical address being accessed is:

Seg. base + EA = 32720200H + (BP-4) = 32720200H + 05E6H = 327207E6H

 6

3. (40 points) Conditional instructions
For each part of this problem, write a short 80386DX code sequence that performs the specified
operation. CHOOSE ANY TWO OF THE THREE PARTS and fill in the space provided with
appropriate code. You may complete all three parts for up to 10 points of extra credit, but
must clearly indicate which part is the extra one—I will assume it is part (c) if you mark
none of them.

a. Implement the following conditional statement. You may assume that “X” and “Y” refer to

16-bit variables stored in memory, which can be directly accessed using those names (for
example, MOV AX, X would move the contents of variable “X” to AX).

if (AX < 10) {
 CX = X + 10;
}
else if (AX == 20) {
 CX = CX – Y;
}
else {
 CX = X + Y;
}

Solution: Other solutions may be acceptable; the key pieces to this problem are:

• Evaluating the two conditions properly
• Ensuring that you only execute one of the blocks—the “if” case, “else if” case, or “else”

case.

CMP AX, 10
JL IF ; Go to “IF” if AX < 10
CMP AX, 20
JE ELIF ; Go to “ELIF” if AX == 20
MOV CX, X ; “Else” case--CX = X + Y
ADD CX, Y
JMP FIN ; Skip “if”, “else if” cases

IF: MOV CX, X ; “If” case--CX = X + 10
 ADD CX, 10
 JMP FIN ; Skip “else if” case
ELIF: SUB CX, Y ; “Else if” case--CX = CX – Y
FIN: ; End of statement

 7

3 (continued)
b. Implement the following loop. As in part (a), assume “X” is a 16-bit variable in memory that

can be accessed by name. (Hint: Any loop that executes the correct number of iterations is
acceptable—you do not necessarily have to change your loop counter in exactly the same
way as the for loop, since i is not used in the body of the loop.)

for (i = 0; i < X; i++) {
 AX = AX + X;
 BX = BX - X;
 if (AX == BX)
 break; // Exit loop early
}

Solution: Other solutions may be valid; the key pieces of this problem are:
• Ensuring that the assignment statements are enclosed in a loop with X iterations.

o Note that, as mentioned above, any loop with X iterations will be valid. The
solution below takes advantage of the x86 LOOP instructions so that the actual
loop counts from X down to 0, rather than counting up.

• Comparing AX to BX and exiting the loop early if they are equal.
o Note that this can be accomplished by using a LOOPNE instruction, as shown

below, or by adding an explicit jump instruction that leaves the loop when the
condition is true.

MOV CX, X ; CX = X = # of loop iterations

L: ADD AX, X ; AX = AX + X
 SUB BX, X ; BX = BX – X
 CMP AX, BX
 LOOPNE L ; Decrement CX, then check if
 ; CX is non-zero and previous compare
 ; result is “not equal” (AX != BX)
 ; If either of those conditions are

; false, exit loop

 8

3 (continued)
c. Implement the following conditional statement. As in part (a), assume “X” and “Y” are 16-bit

variables in memory that can be accessed by name. (Note: Make sure you carefully count the
parentheses to make sure you combine conditions correctly!)

if (((AX < X) && (BX < Y)) || ((AX > Y) && (BX > X))) {
 AX = AX - BX;
}

Solution: Other solutions may be possible; the key piece of this problem is the evaluation of the
complex condition shown, which can be done with SETcc instructions:

 CMP AX, X
 SETL DL ; (AX < X)
 CMP BX, Y
 SETL DH ; (BX < Y)
 AND DL, DH ; ((AX < X) && (BX < Y))
 CMP AX, Y
 SETG CL ; (AX > Y)
 CMP BX, X
 SETG CH ; (BX > X)
 AND CL, CH ; ((AX > Y) && (BX > X))
 OR DL, CL ; Logical OR of previous complex conditions
 ; DL is now 1 if the entire condition in the
 ; if statement is true
 JZ SKIP ; If result of OR is zero, skip subtraction
 SUB AX, BX ; AX = AX – BX
SKIP: ; End of code

	Spring 2013
	Exam 2 Solution

