
16.216: ECE Application Programming
Solution to Practice Problems for Exam 2

1. Assume the state of the 80386DX’s registers and memory are:
• (EAX) = 00005555H
• (EBX) = 00000010H
• (ECX) = 00000010H
• (EDX) = 0000AAAAH
• (ESI) = 00000100H
• (EDI) = 00000200H
• (DS:100H) = 0FH
• (DS:101H) = F0H
• (DS:110H) = 00H

• (DS:111H) = FFH
• (DS:200H) = 30H
• (DS:201H) = 00H
• (DS:210H) = AAH
• (DS:211H) = AAH
• (DS:220H) = 55H
• (DS:221H) = 55H
• (DS:300H) = AAH
• (DS:301H) = 55H

Also, assume all flags (ZF, CF, SF, PF, OF) are initialized to 0.

For each instruction sequence shown below, list all changed registers and/or memory locations
and their new values, as well as all changed flags from the list above. Note that the registers and
memory have the same starting values at the beginning of each sequence, but a value changed by
one instruction in a sequence can affect the results of all other instructions in the same sequence.

All work shown, but final answer (locations/flags changed by instruction) in blue italics.

a. BT AX, 4  AX = 5555H = 0101 0101 0101 01012

CF = bit 4 of AX = 1

SETC [100H]  (DS:100H) = FFH, since CF == 1

BTS AX, 5  CF = bit 5 of AX = 0
  Bit 5 of AX set to 1

AX = 0101 0101 0111 01012 = 5575H

SETC [101H]  (DS:101H) = 00H, since CF == 0

BTR AX, 6  CF = bit 6 of AX = 1
  Bit 6 of AX reset to 0

AX = 0101 0101 0011 01012 = 5535H

SETC [110H]  (DS:110H) = FFH, since CF == 1

BTC AX, 7  CF = bit 7 of AX = 0
  Bit 7 of AX complemented

AX = 0101 0101 1011 01012 = 55B5H

SETC [111H]  (DS:111H) = 00H, since CF == 0

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 2

b. BSF AL, WORD PTR [BX+SI]  Scan word (DS:BX+SI),
starting with bit 0

 (DS:110H) = FF00H
 First non-zero bit = bit 8

  AL = 08H, ZF = 1

BSR AH, WORD PTR [BX+SI]  Scan word (DS:BX+SI),
starting with bit 15

 (DS:110H) = FF00H
 First non-zero bit = bit 15

  AL = 0FH, ZF = 1

CMP AL, AH  Compare AL to AH by subtracting AL – AH
 AL - AH = 08H – 0FH = F9H
  SF = 1 (result negative)
 ZF = 0 (result non-zero)
 OF = 0 (no overflow)
 CF = 1 (borrow out of MSB)
 PF = 1 (even parity)

JG S  Jump is not taken, since (AL > AH) not
true ((SF XOR OF) must be 0 for
condition code "G" to be true)

MOV DX, [200H] DX = word at (DS:200H) = 0030H

JMP E  Unconditionally jump to label E, skip
 next instruction

S: MOV DX, [210H]

E: MOV [BX+DI+10H],DX  (DS:BX+DI+10H) = DX
 (DS:220H) = 0030H (DS:220H)= 30H

(DS:221H)= 00H

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 3

c. CMP AL, 56H  Compare AL to 56H by subtracting AL – 56H
 AL - 56H = 55H – 56H = FFH
  SF = 1 (result negative)
 ZF = 0 (result non-zero)
 OF = 0 (no overflow)
 CF = 1 (borrow out of MSB)
 PF = 1 (even parity)

JL L1  Jump is taken, since AL < 56H
 Next three instructions are skipped
JG L2
MOV AH, BL
JMP E

L1: MOV AH, CH  AH = CH = 00H

 JMP E  Unconditionally jump to label E, skip
 next instruction
L2: MOV AH, DL
E: SETL [DI]  If flags indicate "less than", set byte at

(DS:DI) = FFH, otherwise (DS:DI) = 0
 Remember, move and jump instructions

don’t change flags—still have same
values from compare instruction!

  (DS:0200H) = FFH

d. MOV AX, 0001H  AX = 0001H
MOV CX, 0004H  CX = 0004H

The following two instructions comprise a loop—the SHL
instruction is the loop body, while the LOOP instruction will
decrement CX and then jump back to label ST if CX is not 0.

Since CX = 0004H at the start of the loop, the loop will execute
4 times. Each time through the loop, AX will be shifted left by
CX bits—4, then 3, then 2, then 1.

ST: SHL AX, CX  1st iteration: AX << 4 =
0000 0000 0000 00012 << 4 =
0000 0000 0001 00002

  2nd iteration: AX << 3 =
 0000 0000 0001 00002 << 3 =
 0000 0000 1000 00002
  3rd iteration: AX << 2 =
 0000 0000 1000 00002 << 2 =

0000 0010 0000 00002
 3rd iteration: AX << 1 =

 0000 0010 0000 00002 << 1 =
0000 0100 0000 00002 = final value of AX

 LOOP ST  After last iteration, CX = 0

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 4

e. MOV AX, 8000H  AX = 8000H
The following three instructions comprise a loop—the SAR/CMP
instructions are the loop body, while the LOOPNE instruction
will decrement CX (which starts as 0010H), then jump back to
label ST if CX is not 0 AND the result of the CMP is "not
equal".

The loop has a maximum of 16 iterations, but will exit early if
the value of AX == (DS:BX+SI) == (DS:110) == FF00H. As you can
see below, this early exit condition will occur after 7 loop
iterations.

ST: SAR AX, 1  Remember, SAR maintains the sign of the
original value

 1st iteration: AX >> 1 =
 1000 0000 0000 00002 >> 1 =

1100 0000 0000 00002
 2nd iteration: AX >> 1 =

 1100 0000 0000 00002 >> 1 =
1110 0000 0000 00002
.

.

.

 6th iteration: AX >> 1 =
 1111 1100 0000 00002 >> 1 =

1111 1110 0000 00002
 7th iteration: AX >> 1 =

 1111 1110 0000 00002 >> 1 =
1111 1111 0000 00002 = FF00H
AX = FF00H = (DS:110H)  NE condition

will be false; loop will end
 CMP AX, [BX+SI]  Compare AX to FF00H by subtracting

AX – FF00H
  In first 6 iterations:
 SF = 1 (result negative)
 ZF = 0 (result non-zero)
 OF = 0 (no overflow)
 CF = 1 (borrow out of MSB)
 PF depends on result
  In last iteration:

 SF = 0 (result positive)
 ZF = 1 (result is zero)
 OF = 0 (no overflow)
 CF = 0 (no borrow out of MSB)
 PF = 1 (even parity)

 LOOPNE ST  After last iteration, CX = 0009H

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 5

2. As noted in class, the SETcc instruction can be used to combine multiple conditions together
to create a compound conditional test. For example, the code below tests the condition
((A < B) && (C < D)), storing the result in DL:

MOV AX, A
CMP AX, B
SETL DL
MOV AX, C
CMP AX, D
SETL DH
AND DL, DH

For each part of this problem, assume A, B, C, D, E, and F refer to signed integers stored in
memory.

a. What compound condition is tested by each of the code sequences below?

i. MOV AX, A
CMP AX, B
SETLE BL (A <= B)
CMP AX, E
SETGE BH (A >= E)
OR BL, BH ((A <= B) || (A >= E)

ii. MOV AX, C
CMP AX, A
SETE BL (C == A)
MOV AX, B
CMP AX, A
SETNE BH (B != A)
AND BL, BH ((C == A) && (B != A))
CMP AX, C
SETL BH (B < C)
AND BL, BH ((C == A) && (B != A) && (B < C))
CMP AX, A
SETZ BH (B – A == 0)  (B == A)
OR BL, BH (((C == A)&&(B != A)&&(B < C)) || (B == A))

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 6

iii. MOV AX, A
SUB AX, B AX == A - B
CMP AX, C
SETGE BL ((A – B) >= C)
MOV AX, D
ADD AX, E
SUB AX, F
SETNZ BH ((D + E) – F != 0)  ((D + E) != F)
OR BL, BH (((A – B) >= C) || ((D + E) != F))

b. Write a sequence of instructions that tests each of the following compound conditions.

i. ((A > B) || (A < C)) && ((A != D) || (A == E))
MOV AX, A
CMP AX, B
SETG BL
CMP AX, C
SETL BH
OR BL, BH
CMP AX, D
SETNE BH
CMP AX, E
SETE DL
OR BH, DL
AND BL, BH

ii. ((A – B > 0) && !C)
MOV AX, A
SUB AX, B
SETG BL  Note that you don’t have to explicitly

compare AX to 0 (although you can)—if
an operation that sets the 80386 flags
generates a positive result, the
condition "G" (greater than) is true

 MOV AX, C
 CMP AX, 0  You do have to explicitly compare C to 0
 SETE BH (condition !C is the same as (C == 0))
 because the MOV operation does not set
 the flags
 AND BL, BH

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 7

iii. ((B >= A + C) || (D <= C + A))

MOV AX, A
ADD AX, C
CMP B, AX
SETGE BL
CMP D, AX  AX == A + C == C + A
SETLE BH
OR BL, BH

3. Assume CS = 1010H, IP = 1A00, and EBX = 20AAFE00. What is the starting address of
each subroutine accessed by the CALL instructions below? (In other words, what is the target
address of the CALL?)

i. CALL 0100H

Solution: If the target address is a 16-bit immediate, as shown here, that value is added to IP
to generate the new address.
  IP = 1A00 + 0100H = 1B00H
  CS is unchanged = 1010H
  Target address is CS:IP = 1010H:1B00H
If you assume the processor is in real mode (which is usually a safe assumption), then the
physical target address is 10100+1B00 = 11C00H

ii. CALL FFF0H

Solution: The target address is again a 16-bit immediate to be added to IP. Note that this
offset is negative—this CALL goes to a lower address than the instruction that calls it.
  IP = 1A00 + FFF0H = 19F0H
  CS is unchanged = 1010H
  Target address is CS:IP = 1010H:19F0H
In real mode, the physical target address is 10100+19F0 = 11AF0H

iii. CALL 411ABE00

Solution: With a 32-bit immediate as the target, both CS and IP are overwritten, with the
upper 16 bits of the immediate going to CS and the lower 16 bits going to IP.
  IP = BE00H
  CS = 411AH
  Target address is CS:IP = 411AH:BE00H
In real mode, the physical target address is 411A0+BE00 = 4CFA0H

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 8

iv. CALL BX

Solution: With a 16-bit register as the target, IP is overwritten by the register value.
  IP = BX = FE00H
  CS is unchanged = 1010H
  Target address is CS:IP = 1010H:FE00H
In real mode, the physical target address is 10100+FE00 = 1FF00H

v. CALL EBX

Solution: With a 32-bit register as the target, both CS and IP are overwritten, with the upper
16 bits of the register going to CS and the lower 16 bits going to IP.
  IP = lower 16 bits of EBX = FE00H
  CS = upper 16 bits of EBX = 20AAH
  Target address is CS:IP = 20AAH:FE00H
In real mode, the physical target address is 20AA0 + FE00 = 308A0H

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 9

4. Assume the 80386 is running in protected mode with the state given below (all values in
hex); note that each memory location shown contains a descriptor about a particular segment:

GDTR = 00200000001F
LDTR = 000B

Memory Address
Base = 030010F0
Limit = 020F

00200000

Base = 00200020
Limit = 0017

00200008

Base = 00200038
Limit = 0010

00200010

Base = 1200C000
Limit = FFFF

00200018

Base = 12340000
Limit = 00FF

00200020

DS = 0017
SS = 0018
ESI = 00001000
EBX = 0001120

Memory Address
Base = 01000010
Limit = 1127

00200028

Base = 03170200
Limit = 03F7

00200030

Base = 1A000000
Limit = 01FF

00200038

Base = 06B01000
Limit = 0F07

00200040

Base = 05000120
Limit = 000F

00200048

a. What is the base address and limit of the global descriptor table? How many descriptors does
this table contain?

Solution: The base address and limit of the GDT are stored in the GDTR—the upper 4 bytes
contain the base address (00200000H); the lower 2 bytes contain the limit (001FH).

To determine the number of descriptors, recall that:

• Each descriptor uses 8 bytes
• The size of the table, in bytes, is (limit + 1) = 001FH + 1 = 0020H = 32 bytes

Therefore, this table contains 32 / 8 = 4 descriptors

b. What is the base address and limit of the current local descriptor table? How many
descriptors does this table contain?

Solution: The base address and limit of the current LDT are stored in the LDT cache, which
must be loaded from the appropriate descriptor in the GDT. The LDTR is a selector that points to
the correct descriptor. Recall that, in a selector:

• The lowest 2 bits give the requested priority level
• The next bit (table indicator) indicates either global (0) or local (1) memory access
• The upper 13 bits index into the appropriate descriptor table to choose a descriptor.

LDTR = 000BH = 0000 0000 0000 10112
 Priority = 112, table indicator = 0, index = 0000 0000 0000 12 = 1
 GDT descriptor 1 (the second descriptor in the GDT) describes current LDT

Therefore, the LDT base address = 00200020H, its limit = 0017H, and the number of
descriptors = (0017H+1) / 8 = 0018H / 8 = 24 / 8 = 3 descriptors.

16.317: Microprocessor Systems Design I Instructor: M. Geiger
Spring 2012 Solution to Exam 2 Practice Problems

 10

c. What are the starting and ending addresses for the current data and stack segments?

Solution: In protected mode, the segment registers are selectors pointing either to the GDT or
current LDT, as shown in (b). Therefore, the starting (base) and ending (base + limit) addresses
for each segment can be determined after finding the right descriptor.

DS = 0017H = 0000 0000 0001 01112

 Priority = 112, table indicator = 1, index = 0000 0000 0001 0 = 2
 Descriptor #2 (3rd descriptor) in LDT describes data segment

 DS base address = 03170200H, ending address = 03170200 + 03F7 = 031705F7H
SS = 0018H = 0000 0000 0001 10002

 Priority = 002, table indicator = 0, index = 0000 0000 0001 1 = 3
 Descriptor #3 (4th descriptor) in GDT describes stack segment

 SS base address = 1200C000H, ending address = 1200C000 + FFFF = 1201BFFFH

d. What address is accessed by each of the following instructions?

Recall that protected mode addresses are calculated by adding the base address of the requested
segment to the effective address calculated from the instruction. Part (c) of this problem helped
you determine the starting address of each segment used.

i. MOV AX, [0100H]

Solution: Address = DS:0100H = 03170200H + 0100H = 03170300H

ii. ADD DX, [SI]

Solution: Address = DS:SI = DS:1000H = 03170200H + 1000H = 03171200H

iii. MOV AX, SS:[SI+EF00]

Solution: Address = SS:SI+EF00 = SS:1000H+EF00H

= 1200C000H + 1000H + EF00H = 1201BF00H

iv. SUB SS:[A200], CX

Solution: Address = SS:A200 = 1200C000H + A200H = 12016200H

v. MOV DX, [BX+SI]

Solution: Address = DS:BX+SI = DS:1120H+1000H

= 03170200H + 1120H + 1000H = 03172320H

vi. MOV CX, [BX+SI+1EH]

Solution: Address = DS:BX+SI+1EH = DS:1120H+1000H +1EH

= 03170200H + 1120H + 1000H + 1EH = 0317233EH

	Solution to Practice Problems for Exam 2

