
 1

16.317: Microprocessor-Based Systems I
Spring 2012

Exam 2 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Given CS = 1000H, IP = E000, and EBX = 1E001000, which of the following CALL

instructions will transfer control to an instruction at physical address 1F000H?

A. CALL 1000H
B. CALL F000H
C. CALL BX
D. CALL EBX
E. CALL HOME_BECAUSE_YOUR_MOTHER_MISSES_YOU

(hey, for all you know, that could be a valid instruction label)

i. A and C

ii. B and C

iii. A and D
iv. B and D

b. How many iterations does the following loop execute?

MOV CX, 0008H
MOV AX, 0000H

START: ADD AX, 0002H
 CMP AX, CX
 LOOPNE START

i. 2

ii. 3
iii. 4

iv. 6

v. 8

 2

1 (cont.)
c. Assuming A, B, C, and D are all signed integers, what compound condition does the

following instruction sequence test?

MOV AX, D
CMP A, AX
SETL BL
SUB AX, B
CMP AX, C
SETGE BH
AND BL, BH

i. (A < D) && (B >= C)

ii. (A < D) && (D >= C)

iii. (A <= D) && (D – B >= C)

iv. (A < D) && (D – B >= C)

v. (A <= D) && (B – D >= C)

d. Which of the following statements about virtual memory are true?

A. When translating a virtual address to a physical address, the virtual page number is
replaced by the appropriate physical frame number, while the lower bits of the
address—the page offset—remain the same.

B. The number of bits in the page offset depends on the number of pages in the virtual
address space.

C. Because all virtual pages cannot fit in physical memory, each page table entry
requires a valid bit to indicate if the frame number in that entry is valid.

D. The TLB is a sandwich containing the same ingredients as a BLT, but with those
ingredients stacked in the opposite order.

i. Only A

ii. Only C

iii. A and B

iv. A and C

v. A, B, and C

 3

2. (40 points) Protected mode memory accesses
Assume the 80386 is running in protected mode with the state given below. Note that each
memory location shown contains a descriptor for a particular segment.

GDTR = 123000080017
LDTR = 0008
LDTR cache: base = 12300028
LDTR cache: limit = 0027

Memory Address
Base = 030010F0
Limit = 020F

12300000

Base = 12300020
Limit = 0007

12300008

Base = 12300028
Limit = 0027

12300010

Base = 1200C000
Limit = FFFF

12300018

Base = 12340000
Limit = 00FF

12300020

DS = 0006
ESI = 0000CD04
EBX = 00031A0

Memory Address
Base = AC000000
Limit = 0317

12300028

Base = 01610200
Limit = 03F7

12300030

Base = 03170214
Limit = 030F

12300038

Base = 06B01000
Limit = 0F07

12300040

Base = 05000120
Limit = 000F

12300048

What address does each of the following instructions access? (Hint: solving part (a) should
help you solve parts (b) and (c)).

a. MOV AX, [00H]

Solution: Remember that:

• Calculating memory addresses, even in protected mode, is about adding the starting
address of a segment to the effective address specified in the instruction.

• In protected mode, to find the starting address of a segment, you need to find the
descriptor that describes your segment.

o Each descriptor is an entry in either the GDT or the LDT, tables that start at
addresses specified by the GDTR or the LDTR cache, respectively.

o The selector for the current segment contains an index field that points to a
descriptor in the specified table.

In this problem, the selector is always the DS register, which has the following binary value:
 DS = 0006H = 0000 0000 0000 01102  index = 0, TI = 1, RPL = 10
For this problem, we ignore the RPL (requested priority level) and focus on the other fields:

• TI = 1 indicates that this is a local memory access, so the descriptor with information
about the data segment is in the LDT.

• Index = 0 indicates that the correct descriptor is the first descriptor in that table.
According to the LDTR cache, the base address of the LDT is 12300028H; the first selector
at that address indicates that the data segment has a base address of AC000000H. Therefore,
the address being accessed is:
 (Segment base) + (effective address) = AC000000H + 00H = AC000000H

 4

2 (cont.)
b. ADD [SI], CX

Solution: Since we found the starting address of DS (AC000000H) in the previous part, we
don’t need to go through that process again. This instruction uses indexed addressing, so the
effective address is equal to the value of SI = CD04H, and the address being accessed is:

(Segment base) + (effective address) = AC000000H + CD04H = AC00CD04H
Note: As one of you pointed out after the test (and several people wrote in their solutions),
that effective address is greater than the limit of the segment (limit = 0317H) and is therefore
invalid.
Technically, this effective address can be valid—as we briefly discussed in class, the
granularity bit in the descriptor can indicate that the segment size that you would normally
compute from the limit (limit + 1) is essentially multiplied by 212, and if that were the case,
the effective address would easily fit inside that segment. However, my intent was not to
assume that was the case in this problem—I simply made a mistake, for which I apologize.
Hopefully, it didn’t cause too much confusion.

c. SHL [BX+10H], 7

Solution: As in part (b), we already have the starting address of our data segment. The
effective address is BX + 10H = 31A0H + 10H = 31B0H, so the actual address is:

(Segment base) + (effective address) = AC000000H + 31B0H = AC0031B0H
Note: The above note about invalid addresses unfortunately applies to this problem, too.

 5

3. (40 points) Assembly language
For each instruction sequence shown below, list all changed registers, memory locations,
and/or flags, as well as their new values.

a. Initial state:
• (EAX) = 0000ABC0H
• (EBX) = 000012ACH
• (ECX) = 00000020H
• (EDX) = 00000000H
• (ESI) = 00000100H
• (EDI) = 00000200H
• (DS:100H) = 00H
• (DS:101H) = F0H
• (DS:110H) = 00H

• (DS:111H) = FFH
• (DS:200H) = 30H
• (DS:201H) = 00H
• (DS:210H) = AAH
• (DS:211H) = AAH
• (DS:220H) = 55H
• (DS:221H) = 55H
• (DS:300H) = AAH
• (DS:301H) = 55H

Also, assume all flags (ZF, CF, SF, PF, OF) are initialized to 0.

Solution:
 BSF DX, AX  Forward bit scan of AX;
 index of first non-zero bit
 stored in DX
  AX = ABC0H = 1010 1011 1100 00002
  First nonzero bit = bit 6
  DX = 0006H
  ZF = 1 (indicates result is non-
 zero (in bit scans only))
 JNZ END  Jump if ZF == 0
  Jump is not taken since ZF == 1
 BT BX, DX  Test bit in BX, store value in CF
  Index = DX = 6
  BX = 12ACH = 0001 0010 1010 11002
  CF = Bit 6 of BX = 0
 SETNC [100H]  Byte at DS:100H = FFH if CF == 0,
 00H otherwise
  Since CF == 0, DS:100H = FFH
END: AND CL, [100H]  CL = CL & DS:100H = CL & FFH
  CL unchanged since any byte && FFH
 remains same  CL = 20H

 6

3 (cont.)
b. Initial state:

• (EAX) = 00000016H
• (EBX) = 00000317H
• (ECX) = 00000010H
• (EDX) = 0000ABCDH
• (ESI) = 00000100H
• (EDI) = 00000106H
• (DS:100H) = 0FH
• (DS:101H) = F0H
• (DS:102H) = 00H

• (DS:103H) = FFH
• (DS:104H) = 30H
• (DS:105H) = 00H
• (DS:106H) = AAH
• (DS:107H) = AAH
• (DS:108H) = 55H
• (DS:109H) = 55H
• (DS:10AH) = AAH
• (DS:10BH) = 55H

Also, assume all flags (ZF, CF, SF, PF, OF) are initialized to 0.

Solution:
 CMP AX, BX  Set flags based on result of AX – BX
 = 0016H – 0317H = FCFFH
  SF = 1 (result negative)
 ZF = 0 (result non-zero)
 CF = 1 (borrow out of MSB)
 OF = 0 (no overflow)
 PF = 1 (even parity)
 JE L1  Jump if comparison shows values equal
  Jump not taken
 JG L2  Jump if comparison shows AX > BX
  Jump not taken
 INC AX  AX = AX + 1 = 0017H
  Also sets flags, although I did not
 grade you on these values:
  SF = 0 (result positive)
 ZF = 0 (result non-zero)
 CF = 0 (no carry out)
 OF = 0 (no overflow)
 PF = 1 (even parity)
 JMP END  Unconditionally jump to label END—
 skip next 3 instructions
L1: DEC AX
 JMP END
L2: MOV AX, BX
END: MOV [DI+02H], AX  Move word in AX to DS:DI+02H
 = DS:0106H + 02H = DS:0108H
  DS:108H = 17H
  DS:109H = 00H

	Spring 2012
	Exam 2 Solution

