
The following pages contain references for use during the exam: tables containing the 80386 instruction
set and condition codes. You may detach these sheets from the exam and do not need to submit them
when you finish.

Remember that:
• Most instructions can have at most one memory operand.
• Brackets [] around a register name, immediate, or combination of the two indicates an effective

address. That address is in the data segment unless otherwise specified.
o Example: MOV AX, [10H]  contents of DS:10H moved to AX

• Parentheses around a logical address mean “the contents of memory at this address”.
o Example: (DS:10H)  the contents of memory at logical address DS:10H

Category Instruction Example Meaning

Data
transfer

Move MOV AX, BX AX = BX
Move & sign-extend MOVSX EAX, DL EAX = DL, sign-extended

to 32 bits
Move and zero-extend MOVZX EAX, DL EAX = DL, zero-extended

to 32 bits
Exchange XCHG AX, BX Swap contents of AX, BX
Load effective
address

LEA AX, [BX+SI+10H] AX = BX + SI + 10H

Load full pointer LDS AX, [10H]

LSS EBX, [100H]

AX = (DS:10H)
DS = (DS:12H)

EBX = (DS:100H)
SS = (DS:104H)

Arithmetic

Add ADD AX, BX AX = AX + BX
Add with carry ADC AX, BX AX = AX + BX + CF
Increment INC [DI] (DS:DI) = (DS:DI) + 1
Subtract SUB AX, [10H] AX = AX – (DS:10H)
Subtract with borrow SBB AX, [10H] AX = AX – (DS:10H) – CF
Decrement DEC CX CX = CX – 1
Negate (2’s
complement)

NEG CX CX = -CX

Unsigned multiply
(all operands are non-
negative, regardless
of MSB value)

MUL BH
MUL CX
MUL DWORD PTR [10H]

AX = BH * AL
(DX,AX) = CX * AX
(EDX,EAX) = (DS:10H) *
EAX

Signed multiply
(all operands are
signed integers in 2’s
complement form)

IMUL BH
IMUL CX
IMUL DWORD PTR[10H]

AX = BH * AL
(DX,AX) = CX * AX
(EDX,EAX) = (DS:10H) *
EAX

Unsigned divide DIV BH

DIV CX

DIV EBX

AL = AX / BH (quotient)
AH = AX % BH (remainder)

AX = EAX / CX (quotient)
DX = EAX % CX (remainder)

EAX = (EDX,EAX) / EBX (Q)
EDX = (EDX,EAX) % EBX (R)

Category Instruction Example Meaning

Logical

Logical AND AND AX, BX AX = AX & BX
Logical inclusive OR OR AX, BX AX = AX | BX
Logical exclusive OR XOR AX, BX AX = AX ^ BX
Logical NOT
(1’s complement)

NOT AX AX = ~AX

Shift/rotate
(NOTE: for
all
instructions
except
RCL/RCR,
CF = last
bit shifted
out)

Shift left SHL AX, 7

SAL AX, CX

AX = AX << 7

AX = AX << CX

Logical shift right
(treat value as
unsigned, shift in 0s)

SHR AX, 7 AX = AX >> 7
(upper 7 bits = 0)

Arithmetic shift right
(treat value as signed;
maintain sign)

SAR AX, 7 AX = AX >> 7
(upper 7 bits = MSB of
original value)

Rotate left ROL AX, 7 AX = AX rotated left by 7
(lower 7 bits of AX =
upper 7 bits of original
value)

Rotate right ROR AX, 7 AX=AX rotated right by 7
(upper 7 bits of AX =
lower 7 bits of original
value)

Rotate left through
carry

RCL AX, 7 (CF,AX) rotated left by 7
(Treat CF & AX as 17-bit
value with CF as MSB)

Rotate right through
carry

RCR AX, 7 (AX,CX) rotated right by
7
(Treat CF & AX as 17-b8t
value with CF as LSB)

Bit test/
scan

Bit test BT AX, 7 CF = Value of bit 7 of AX
Bit test and reset BTR AX, 7 CF = Value of bit 7 of AX

Bit 7 of AX = 0
Bit test and set BTS AX, 7 CF = Value of bit 7 of AX

Bit 7 of AX = 1
Bit test and
complement

BTC AX, 7 CF = Value of bit 7 of AX
Bit 7 of AX is flipped

Bit scan forward BSF DX, AX DX = index of first non-
zero bit of AX, starting
with bit 0
ZF = 0 if AX = 0, 1
otherwise

Bit scan reverse BSR DX, AX DX = index of first non-
zero bit of AX, starting
with MSB
ZF = 0 if AX = 0, 1
otherwise

Category Instruction Example Meaning

Flag
control

Clear carry flag CLC CF = 0
Set carry flag STC CF = 1
Complement carry
flag

CMC CF = ~CF

Clear interrupt flag CLI IF = 0
Set interrupt flag STI IF = 1
Load AH with
contents of flags
register

LAHF AH = FLAGS

Store contents of AH
in flags register

SAHF FLAGS = AH
(Updates SF,ZF,AF,PF,CF)

Conditional
tests

Compare CMP AX, BX Subtract AX – BX
Updates flags

Byte set on condition SETcc AH AH = FF if condition true
AH = 0 if condition false

Jumps and
loops

Unconditional jump JMP label Jump to label
Conditional jump Jcc label Jump to label if

condition true
Loop LOOP label Decrement CX; jump to

label if CX != 0
Loop if equal/zero LOOPE label

LOOPZ label
Decrement CX; jump to
label if (CX != 0) &&
(ZF == 1)

Loop if not equal/zero LOOPNE label
LOOPNZ label

Decrement CX; jump to
label if (CX != 0) &&
(ZF == 0)

Subroutine-
related
instructions

Call subroutine CALL label Jump to label; save
address of instruction
after CALL

 Return from
subroutine

RET label Return from subroutine
(jump to saved address
from CALL)

 Push PUSH AX

PUSH EAX

SP = SP – 2
(SS:SP) = AX

SP = SP – 4
(SS:SP) = EAX

 Pop POP AX

POP EAX

AX = (SS:SP)
SP = SP + 2

EAX = (SS:SP)
SP = SP + 4

 Push flags PUSHF Store flags on stack
 Pop flags POPF Remove flags from stack
 Push all registers PUSHA Store all general purpose

registers on stack
 Pop all registers POPA Remove general purpose

registers from stack

Condition
code

Meaning Flags

O Overflow OF = 1
NO No overflow OF = 0
B
NAE
C

Below
Not above or equal
Carry

CF = 1

NB
AE
NC

Not below
Above or equal
No carry

CF = 0

S Sign set SF = 1
NS Sign not set SF = 0
P
PE

Parity
Parity even PF = 1

NP
PO

No parity
Parity odd PF = 0

E
Z

Equal
Zero ZF = 1

NE
NZ

Not equal
Not zero ZF = 0

BE
NA

Below or equal
Not above CF OR ZF = 1

NBE
A

Not below or equal
Above CF OR ZF = 0

L
NGE

Less than
Not greater than or equal SF XOR OF = 1

NL
GE

Not less than
Greater than or equal SF XOR OF = 0

LE
NG

Less than or equal
Not greater than (SF XOR OF) OR ZF = 1

NLE
G

Not less than or equal
Greater than (SF XOR OF) OR ZF = 0

