The following pages contain references for use during the exam: tables containing the 80386 instruction set and condition codes. You may detach these sheets from the exam and do not need to submit them when you finish.

Remember that:

- Most instructions can have at most one memory operand.
- Brackets [] around a register name, immediate, or combination of the two indicates an effective address. That address is in the data segment unless otherwise specified.
 - Example: MOV AX, [10H] \rightarrow contents of DS:10H moved to AX
- Parentheses around a logical address mean "the contents of memory at this address".
 Example: (DS:10H) → the contents of memory at logical address DS:10H

Category	Instruction	Example	Meaning
Data	Move	MOV AX, BX	AX = BX
	Move & sign-extend	MOVSX EAX, DL	EAX = DL, sign-extended
			to 32 bits
	Move and zero-extend	MOVZX EAX, DL	EAX = DL, zero-extended
			to 32 bits
	Exchange	XCHG AX, BX	Swap contents of AX, BX
	Load effective	LEA AX, [BX+SI+10H]	AX = BX + SI + 10H
transier	address		
	Load full pointer	LDS AX, [10H]	AX = (DS:10H)
			DS = (DS:12H)
		LSS EBX, [100H]	EBX = (DS:100H)
			SS = (DS:104H)
	Add	ADD AX, BX	AX = AX + BX
	Add with carry	ADC AX, BX	AX = AX + BX + CF
	Increment	INC [DI]	(DS:DI) = (DS:DI) + 1
	Subtract	SUB AX, [10H]	AX = AX - (DS:10H)
	Subtract with borrow	SBB AX, [10H]	AX = AX - (DS:10H) - CF
	Decrement	DEC CX	CX = CX - 1
	Negate (2's	NEG CX	CX = -CX
	complement)		
	Unsigned multiply	MUL BH	AX = BH * AL
	(all operands are non-	MUL CX	(DX, AX) = CX * AX
	negative, regardless	MUL DWORD PTR [10H]	(EDX,EAX) = (DS:10H) *
Arithmetic	of MSB value)		EAX
	Signed multiply	IMUL BH	AX = BH * AL
	(all operands are	IMUL CX	(DX, AX) = CX * AX
	signed integers in 2's	IMUL DWORD PTR[10H]	(EDX,EAX) = (DS:10H) *
	complement form)		EAX
	Unsigned divide	DIV BH	AL = AX / BH (quotient)
			AH = AX % BH (remainder)
		DIV CX	AX = EAX / CX (quotient)
			DX = EAX % CX (remainder)
		DIV EBX	EAX = (EDX, EAX) / EBX (O)
			EDX = (EDX, EAX) % EBX (R)

Category	Instruction	Example	Meaning
Logical	Logical AND	AND AX, BX	AX = AX & BX
	Logical inclusive OR	OR AX, BX	AX = AX BX
	Logical exclusive OR	XOR AX, BX	$AX = AX ^ BX$
-	Logical NOT	NOT AX	$AX = \sim AX$
	(1's complement)		
	Shift left	SHL AX, 7	AX = AX << 7
		SAL AX, CX	AX = AX << CX
	Logical shift right	SHR AX, 7	AX = AX >> 7
	(treat value as		(upper 7 bits = 0)
	unsigned, shift in 0s)	_	_
	Arithmetic shift right	SAR AX, 7	AX = AX >> 7
Shift/rotate	(treat value as signed;		(upper / bits = MSB of
(NOTE: for	maintain sign)		original value)
all	Rotate left	ROL AX, 7	AX = AX rotated left by 7
instructions			(lower / bits of AX =
except			upper / bits of original
RCL/RCR,	Pototo right	BOB AY 7	Value)
CF = last	Rotate light	KOK AX, /	(upper 7 bits of AV -
bit shifted			lower 7 bits of original
out)			value)
	Rotate left through	RCL AX, 7	(CF,AX) rotated left by 7
	carry	- ,	(Treat CF & AX as 17-bit
			value with CF as MSB)
	Rotate right through	RCR AX, 7	(AX,CX) rotated right by
	carry		7
			(Treat CF & AX as 17-b8t
			value with CF as LSB)
	Bit test	BT AX, 7	CF = Value of bit 7 of AX
	Bit test and reset	BTR AX, 7	CF = Value of bit 7 of AX
			Bit 7 of AX = 0
	Bit test and set	BTS AX, 7	CF = Value of bit 7 of AX
			Bit 7 of $AX = I$
	Bit test and	BIC AX, 7	CF = Value of bit 7 of AX
	Complement		Bit / of AX is flipped
Bit test/	Bit scan forward	BSF DX, AX	DX = index of first non-
scan			zero bit ol AX, starting
			$ZF = 0 \text{if} \Delta X = 0 1$
			otherwise
	Bit scan reverse	BSR DX. AX	DX = index of first non-
			zero bit of AX. starting
			with MSB
			ZF = 0 if $AX = 0, 1$
			otherwise

Category	Instruction	Example	Meaning
	Clear carry flag	CLC	CF = 0
	Set carry flag	STC	CF = 1
	Complement carry	CMC	$CF = \sim CF$
	flag		
Flag	Clear interrupt flag	CLI	IF = 0
control	Set interrupt flag	STI	IF = 1
o o na o n	Load AH with	LAHF	AH = FLAGS
	contents of flags		
	register		
	Store contents of AH	SAHF	(Undated SE ZE AE DE CE)
		CMD AY BY	Subtract AY - BY
Conditional	Compare	CHE AA, BA	Updates flags
tests	Byte set on condition	SETCC AH	AH = FF if condition true
10010			AH = 0 if condition false
	Unconditional jump	JMP label	Jump to label
	Conditional jump	Jcc label	Jump to label if
			condition true
	Loop	LOOP label	Decrement CX; jump to
Jumps and			label if CX != 0
loops	Loop if equal/zero	LOOPE label	Decrement CX; jump to
10000		LOOPZ label	label if (CX != 0) &&
			(ZF == 1)
	Loop if not equal/zero	LOOPNE label	Decrement CX; jump to
		LOOPNZ IADEI	(2E - 0)
Subroutine-	Call subroutine	CALL label	Jump to label; save
related			address of instruction
instructions			after CALL
	Return from	RET label	Return from subroutine
	subroutine		(jump to saved address
			from CALL)
	Push	PUSH AX	SP = SP - 2
			(SS:SP) = AX
		PUSH EAX	SP = SP - 4
	Pop	DOD AY	$(SS \cdot SP) = EAA$ $\lambda Y = (SC \cdot SD)$
	l op		SP = SP + 2
		POP EAX	EAX = (SS:SP)
			SP = SP + 4
	Push flags	PUSHF	Store flags on stack
	Pop flags	POPF	Remove flags from stack
	Push all registers	PUSHA	Store all general purpose
			registers on stack
	Pop all registers	POPA	Remove general purpose
			registers from stack

Condition code	Meaning	Flags	
0	Overflow	OF = 1	
NO	No overflow	OF = 0	
В	Below		
NAE	Not above or equal	CF = 1	
С	Carry		
NB	Not below		
AE	Above or equal	CF = 0	
NC	No carry		
S	Sign set	SF = 1	
NS	Sign not set	SF = 0	
Р	Parity	PF – 1	
PE	Parity even		
NP	No parity	PF - 0	
PO	Parity odd	11 = 0	
E	Equal	7F = 1	
Z	Zero	21 - 1	
NE	Not equal	7E = 0	
NZ	Not zero	21 = 0	
BE	Below or equal	CE OR ZE = 1	
NA	Not above		
NBE	Not below or equal	CF OR ZF = 0	
A	Above		
	Less than	SF XOR OF = 1	
NGE	Not greater than or equal		
NL	Not less than	SF XOR OF = 0	
GE	Greater than or equal		
	Less than or equal	(SF XOR OF) OR ZF = 1	
NG	Not greater than	· · · · · ·	
	Not less than or equal	(SF XOR OF) OR $ZF = 0$	
G	Greater than	· · · · · · · · · · · · · · · · · · ·	