16.317: Microprocessor-Based Systems I

Spring 2012

Exam 1 February 24, 2012

Name:	ID #:	_Section:

For this exam, you may use a calculator and one 8.5" x 11" double-sided page of notes. All other electronic devices (e.g., cellular phones, laptops, PDAs) are prohibited. If you have a cellular phone, please turn it off prior to the start of the exam to avoid distracting other students.

The exam contains 3 questions for a total of 100 points. Please answer the questions in the spaces provided. If you need additional space, use the back of the page on which the question is written and clearly indicate that you have done so.

You will have 50 minutes to complete this exam.

Q1: Multiple choice	/ 20
Q2: Memory accesses	/ 40
and addressing modes	/ 40
Q3: Assembly language	/ 40
TOTAL SCORE	/ 100

1. (20 points, 5 points per part) *Multiple choice*

For each of the multiple choice questions below, clearly indicate your response by circling or underlining the single choice you think best answers the question.

a. Which of the following is <u>not</u> an element of a processor software model?

- i. Register set (what registers are available, what their purposes are)
- ii. What operations the processor can perform
- iii. Organization of the memory space
- iv. Organization of the physical pins used to interface with the outside world
- v. Types of data the processor can use

- b. Each statement below names and describes a functional unit on the 80386DX. Which of these descriptions are correct?
 - A. Bus unit: handles interface to memory and devices outside the processor
 - B. Execution unit: terminates professors who do not get tenure
 - C. Segmentation and paging unit: handles memory management and protection services
 - D. Prefetch unit: translates instructions into microcode operations
 - E. Decode unit: accesses memory to fill queue of instructions waiting to be decoded
 - i. Only A
 - ii. A and C
- iii. A, C, and D
- iv. A, C, D, and E
- v. A, B, C, D, and E

1 (cont.)

- c. Given AX = 0009H, DX = 0000H, and (DS:0100H) = 0002H, what is the result of the instruction: DIV WORD PTR [0100H]?
 - i. AX = 0000H, DX = 0009H
 - ii. AX = 0009H, DX = 0000H
- iii. AX = 0004H, DX = 0001H
- iv. AX = 0001H, DX = 0004H
- v. AX = DEADH, DX = BEEFH

- d. Assume the stack is initially empty before the following sequence of instructions:
 - PUSH EAX PUSH EBX PUSH ECX PUSH EDX PUSH SI PUSH DI

What is the value of the stack pointer after the final PUSH instruction?

- i. FFFEH
- ii. FFF8H
- iii. FFF2H
- iv. FFEAH
- v. 0000H

2. (40 points) <u>Memory accesses and addressing modes</u>

Each MOV instruction in the table below demonstrates one of the addressing modes of the 80386DX. Complete the table by determining:

- The address being used for the specified memory operand.
- Whether or not that address is aligned
- The actual byte, word, or double word being transferred, organized in the same way it would be in the register. (Please clearly show how many bytes are being transferred.)

Assume the contents of memory and the following registers are as shown below:

EAX: 000000B4H EBX: 00000006H ESI: 00000010H EDI: 00000012H EBP: 00000008H ESP: 00000004H DS: 3FFFH SS: 4001H

Address		
3FFF0H	00	01
3FFF2H	02	24
3FFF4H	20	12
3FFF6H	FE	ED
3FFF8H	AB	EE
3FFFAH	CA	BA
3FFFCH	EE	FF
3FFFEH	16	31
40000H	72	02
40002H	FE	B6
40004H	19	78
40006H	AA	CC

Address 40008H BΒ DD 4000AH 11 23 4000CH 58 D1 2A 4000EH 52 FA 40010H AF 40012H ΕA 1D 40014H AD AB 40016H C0 04 40018H FE 81 4001AH 18 77 4001CH EC E0 4001EH 17 76

Instruction	Address	Aligned? (Yes/No)	Actual data transferred to register
MOV EAX, [22H]			
MOV AX, SS:[BP]			
MOV AL, [SI+03H]			
MOV EAX, [BX+SI+05H]			

3. (40 points) Assembly language

For each instruction sequence shown below, list <u>all</u> changed registers and/or memory locations and their new values. Where appropriate, you should also list the state of the carry flag (CF).

a. (13 points) Initial state:

	Address		
EAX: 00000000H	21100H	04	00
EBX: 0000000AH	21102H	10	10
ECX: 0000000H	21104H	89	01
EDX: 0000000H	21106H	20	40
CF: 0	21108H	02	00
ESI: 0000008H	2110AH	00	16
EDI: FFFF0000H	2110CH	17	03
EBP: 00000400H	2110EH	FF	00
ESP: 00002000H	21110H	1E	00
DS: 2110H	21112H	06	00
SS: 1000H	21114H	80	00
	21116H	0A	00

Instructions:

LSS DI, [BX+SI] MOVSX AX, [04H] ADD AX, 13H MOV [DI], AX 3 (cont.)

b. (14 points) Initial state:

EAX: 00000000H
EBX: 00000000H
ECX: 00000000H
EDX: 00000000H
CF: 0
ESI: 0000008H
EDI: FFFF0000H
EBP: 00000400H
ESP: 00002000H
DS: 3000H
SS: 1000H

Address		
30000H	04	00
30002H	10	10
30004H	89	01
30006H	20	40
30008H	04	08
3000AH	00	16
3000CH	17	03
3000EH	FF	00
30010H	1E	00
30012H	00	00
30014H	FF	FF
30016H	FF	FF

Instructions:

NEG BYTE PTR [08H] NOT BYTE PTR [09H] ADD AL, [08H] SUB AH, [09H] IMUL AH

c. (13 points) Initial state:

EAX: 0000003CH
EBX: 00000044H
ECX: 00000004H
EDX: 00008181H
CF: 0
ESI: 0000008H
EDI: FFFF0000H
EBP: 00000400H
ESP: 00000040H
DS: 1000H
SS: 8000H

Address		
10000H	11	22
10002H	33	44
10004H	55	66
10006H	77	88
10008H	99	AA
1000AH	BB	CC
1000CH	DD	EE
1000EH	FF	01
10010H	12	23
10012H	34	45
10014H	56	67
10016H	78	89

Instructions:

ROL	AX,	12
ADC	DX,	0
SAR	AX,	CL
XOR	AX,	DX