Lecture 26: Key Questions November 14, 2016

1. (Review) Describe how to operate on multi-byte data.

- 2. Translate these x86 operations to PIC code. Assume that there are registers defined for each x86 register (e.g. AL, AH, BL, BH, etc.). 16-bit values (e.g., AX) must be dealt with as individual bytes
- MOVZX AX, BL

• MOVSX AX, BL

• INC AX

- 2. (continued) Translate these x86 operations to PIC code. Assume that there are registers defined for each x86 register (e.g. AL, AH, BL, BH, etc.). 16-bit values (e.g., AX) must be dealt with as individual bytes
- SUB BX, AX

• RCL AX, 5

Describe the operation of the given subroutine, which implements a 10 ms delay loop. Questions related to this loop are on the following page of the handout.

; TenMs subroutine and its call inserts a delay of exactly ten milliseconds

; into the execution of code.

; It assumes a 4 MHz crystal clock. One instruction cycle = 4 * Tosc.

; TenMsH equ 13 ; Initial value of TenMs Subroutine's counter

; TenMsL equ 250

```
; COUNTH and COUNTL are two variables
```

TenMs

	nop		; one cycle		
	movlw	TenMsH	; Initialize COUNT		
	movwf	COUNTH			
	movlw	TenMsL			
	movwf	COUNTL			
Ten 1					
_	decfsz	COUNTL,F	; Inner loop		
	goto	Ten 1	•		
	decfsz	COUNTH,F	: Outer loop		
	goto	Ten 1	, - -		
	return				

1. What factors determine the amount of delay in this loop?

2. What's the downside of using a loop for delay?

3. Under what conditions does this function decrement COUNTH?

4. Under what conditions does this function return?

5. How many times does each instruction in this function execute?

Describe the operation of the given subroutine, which toggles a series of 3 LEDs in sequence, assuming those LEDs are attached to bits 0-2 of Port D. Questions related to this function start on the next page of the handout.

BlinkTable

movf	PORTD, W	; Copy present state of LEDs into W
andlw	B'00000111'	; and keep only LED bits
addwf	PCL,F	; Change PC with PCLATH and offset in W
retlw	B'00000001'	; (000 -> 001) reinitialize to green
retlw	B'00000011'	; (001 -> 010) green to yellow
retlw	B'00000110'	; (010 -> 100) yellow to red
retlw	B'00000010'	; (011 -> 001) reinitialize to green
retlw	B'00000101'	; (100 -> 001) red to green
retlw	B'00000100'	; (101 -> 001) reinitialize to green
retlw	B'00000111'	; (110 -> 001) reinitialize to green
retlw	B'00000110'	; (111 -> 001) reinitialize to green

In calling program

call	BlinkTable	; get bits to change into W
xorwf	PORTD, F	; toggle them into PORTD

6. What do the first two instructions in this function do?

7. What does the **addwf** instruction do?

8. Why do we need 8 retlw instructions?

9. How is each return value used?

10. Why are the upper 5 bits of every return value equal to 0?