

EECE.3170: Microprocessor Systems Design I
Fall 2016

Homework 9 Solution

1. (40 points) You are given the following function containing a delay loop:

Ten_1
 decfsz COUNTL,F ; Inner loop
 goto Ten_1
 decfsz COUNTH,F ; Outer loop
 goto Ten_1
 return

a. (20 points) If COUNTL is initially 100, COUNTH is initially 10, the clock frequency is 500

kHz, and each instruction takes 4 clock cycles, how long does the whole delay loop take? You
must show your work for full credit.

Solution: The total amount of delay is the product of four factors: the clock cycle time, the
number of cycles per instruction, the number of instructions per loop iteration, and the number of
iterations. To determine each of these:

• Clock cycle time = 1 / (clock frequency) = 1 / 500 kHz = 2 x 10-6 sec = 2 µs
• Cycles per instruction is given as 4, which means each instruction takes 4 * 2 = 8 µs
• The number of instructions per iteration and number of loop iterations can be considered

together to determine the total number of instructions:
o For each decfsz/goto pair, the goto instruction is executed one fewer time than the

decfsz because the goto is skipped the last time through the loop.
o The number of iterations is based on the initial value of the variable being

decremented:
§ For the outer loop, the decfsz executes 10 times and the goto executes 9.
§ The inner loop works differently on the first iteration than on all others:

• 1st time: decfsz executes 100 times, goto executes 99
• 2nd through 10th times: decfsz executes 256 times (since COUNTL

is initially 0), goto executes 255.
o The total number of instructions can be broken down as shown below, with the

total instruction count for each instruction shown in red:

Ten_1
 decfsz COUNTL,F 100 + 9 * 256 = 2404
 goto Ten_1 99 + 9 * 255 = 2394
 decfsz COUNTH,F 10
 goto Ten_1 9
 return 1
 TOTAL: 2404 + 2394 + 10 + 9 + 1 = 4818

The total delay is therefore (4818 instructions) * (8 µs per instruction) = 38544 µs = 38.544 ms.

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Fall 2016 Homework 9

 2

b. (20 points) What are the maximum and minimum possible delays this function can generate?
What initial values would COUNTL and COUNTH have in each case?

Solution: The maximum and minimum possible delays are based on the maximum and
minimum possible number of loop iterations.

For the maximum delay, each loop would execute 256 times, since COUNTL and COUNTH are
each 8-bit values and can therefore hold 256 different values (0-255). To obtain this maximum
delay, COUNTL and COUNTH are both initially 0. We can use similar analysis to part (a) to
find the total number of instructions executed:

Ten_1
 decfsz COUNTL,F 256 * 256 = 65536
 goto Ten_1 256 * 255 = 65280
 decfsz COUNTH,F 256
 goto Ten_1 255
 return 1
 TOTAL: 65536 + 65280 + 256 + 255 + 1 = 131328

The maximum delay is therefore (131328 instructions) * (8 µs per instruction) =
1,050,624 µs = 1.050624 seconds.

For the minimum delay, each loop would exit in its first iteration, with each decfsz instruction
skipping the goto instruction that immediately follows it. In order for the function to behave
that way, COUNTL and COUNTH must both initially be 1.

The function would therefore execute a total of 3 instructions—the two decfsz instructions and
the return instruction, since both gotos are skipped. That means the minimum possible delay is
(3 instructions) * (8 µs per instruction) = 24 µs.

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Fall 2016 Homework 9

 3

2. (40 points) You are given the following short PIC16F1829 assembly function:

F: movf PORTC, W
 andlw B'00000001'
 addwf PCL, F
 retlw B'11110000'
 retlw B'00111100'
 retlw B'00001111'
 retlw B'11111111'

a. (20 points) How many possible return values does this function have? Give an example of a
value stored in PORTC that would cause the function to return each of those possible values.

Solution: The function has four retlw instructions, so it might appear to have four return
values. As discussed using a similar example in class, adding a value to the program counter
(PCL) chooses one of the following instructions by specifying the number of instructions to skip.
In this case, the value added to PCL is the result of the andlw just before it. That instruction’s
result will be either 0 or 1, meaning this function has only two return values—the values
returned by the first two retlw instructions (B'11110000' and B'00111100').

0x00 is one example of a PORTC value that will cause the function to return B'11110000'.
(Any value in which the least significant bit is 0 would work.)

0x01 is one example of a PORTC value that will cause the function to return B'00111100'.
(Any value in which the least significant bit is 1 would work.)

b. (10 points) Is it possible for the function to execute each of the 4 retlw instructions? If so,

explain how, and if not, explain how you would modify the function to make each of those
four instructions reachable.

Solution: The answer above explains why it’s not possible for the function to execute each of the
four retlw instructions—the andlw instruction only generates 0 and 1 as possible values,
making only the first two retlw instructions reachable.

To make all four instructions reachable, the andlw instruction must generate four different
values between 0 and 3 so the addwf instruction functions as a jump that skips between 0 and 3
instructions. To obtain that result, change the andlw instruction to: andlw B'00000011'

EECE.3170: Microprocessor Systems Design I Instructor: M. Geiger
Fall 2016 Homework 9

 4

c. (30 points) Explain what effect each of the following pieces of code would have on I/O port
A. Assume you are using the original version of the function F, not your (potentially)
modified version from part (b).

Note: Since we’re using the original version of the function F, the only two values that function
will return are B'11110000' and B'00111100'. The function return values then work as
bitmasks for the logical operation that follows the function call.

i. call F
xorwf LATA, F

Solution: XOR instructions will flip a group of bits depending on the bitmask used—any
positions in which the bitmask holds a 1 will be flipped, while any positions in which the
bitmask holds a 0 will remain the same. (For example, if port A holds B'10101010', XORing that
value with B'11110000' will yield the result B'01011010'—the upper four bits are flipped, while
the lower four bits stay the same.)

Therefore, this piece of code will flip either the upper four bits or middle four bits of port A.

ii. call F
iorwf LATA, F

Solution: OR instructions will set a group of bits to 1 depending on the bitmask used—any
positions in which the bitmask holds a 1 will be set to 1, while any positions in which the
bitmask holds a 0 will remain the same. (For example, if port A holds B'10101010', ORing that
value with B'11110000' will yield the result B'11111010'—the upper four bits are set to 1, while
the lower four bits stay the same.)

Therefore, this piece of code will set either the upper four bits or middle four bits of port A to 1.

iii. call F

andwf LATA, F

Solution: AND instructions will clear a group of bits (set them to 0) depending on the bitmask
used—any positions in which the bitmask holds a 1 will remain the same, while any positions in
which the bitmask holds a 0 will be cleared. (For example, if port A holds B'10101010', ANDing
that value with B'11110000' will yield the result B'10100000'—the upper four bits stay the same,
while the lower four bits are set to 0.)

Therefore, this piece of code will clear either the lower four bits of port A, or the two lowest and
two highest bits of port A.

