
 1

16.317: Microprocessor Systems Design I
Fall 2015

Exam 2 Solution

1. (16 points, 4 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

Please note that all of the multiple choice questions deal with PIC 16F1829 instructions.

a. If a file register, x, is set to 0x31, and the working register, W, is set to 0x70, what values

do those registers hold after executing the instruction swapf x, W?

i. x = 0x13, W = 0x07

ii. x = 0x13, W = 0x70

iii. x = 0x31, W = 0x07

iv. x = 0x31, W = 0x13

v. x = 0x70, W = 0x31

 2

1 (continued)
b. Which of the following code snippets will not jump to the label L if x = 0xFF?

A. btfss x, 0
 goto L

B. btfsc x, 7

goto L

C. decfsz x, F
goto L

D. incfsz x, F
goto L

i. Only A

ii. Only B

iii. A and D

iv. B and C

v. A and C

 3

1 (continued)
c. Which of the following instructions will set the carry bit (C) to 0 if the file register x is equal

to 0x0F, the working register is equal to 0x10, and the carry bit is initially 1?

A. subwf x, F

B. rlf x, F

C. asrf x, F

D. bcf x, 0

i. Only A

ii. Only B

iii. A and B

iv. A, B, and C

v. A, B, C, and D

d. Which of the following instructions can always be used to decrement the working register, W,
by 1?

i. decf x, W

ii. sublw 1

iii. subwf x, W

iv. addlw -1

v. All of the above (i, ii, iii, and iv)

 4

2. (16 points) Reading PIC assembly
Show the result of each PIC 16F1829 instruction in the sequences below. Be sure to show the
state of the carry (C) bit for any shift or rotate operations.
a. cblock 0x70

x
 endc

movlw 0x0F W = 0x0F

clrf x x = 0

subwf x, F x = x – W = 0 – 0x0F = 0xF1

xorlw 0x36 W = W XOR 0x36 = 0x0F XOR 0x36 = 0x39

andwf x, W W = x AND W = 0xF1 AND 0x39 = 0x31

lslf x, F x = x << 1

 = 0xF1 << 1 = 1111 0001 << 1

 = 1110 0010 = 0xE2

 C = bit shifted out = 1

btfsc STATUS, C Skip next inst. if C == 0 à don’t skip

comf x, F x = ~x (flip all bits of x)

 = ~0xE2 = ~(1110 0010)

 = 0001 1101 = 0x1D

 5

3. (28 points) Subroutines; HLL à assembly
The following questions deal with the register and memory contents shown below. Note that:

• These values represent the state of some registers and memory locations immediately
after the stack frame has been set up for the current function.

• The entire stack frame for the current function is shown, but there may be some
additional data stored in the given address range—do not assume that the values shown in
memory represent only the contents of the current stack frame.

• The last four instructions executed before entering the body of the current function
(which are not the last four instructions executed to set up the stack frame) are:

push edx
push ecx
push ebx
call f

EAX: 0x0000ABBA
EBX: 0x00001400
ECX: 0x09090909
EDX: 0xFF000000
ESI: 0x11340550
EDI: 0x11340590
ESP: 0x40120154

Address
0x40120150 0x00000005
0x40120154 0x0000000A
0x40120158 0xFFFF0000
0x4012015C 0x40120200
0x40120160 0x3170F000
0x40120164 0x00001400
0x40120168 0x09090909
0x4012016C 0xFF000000
0x40120170 0x192610AA

a. (5 points) What is the return address for this function? Explain your answer.

Solution: Knowing the instructions executed before the function call can help you find the return
address. We see that the values of the function arguments (edx, ecx, and ebx) are on the stack
at addresses 0x4012016C, 0x40120168, and 0x40120164, respectively. The next value in the
stack therefore must be the return address, which is pushed when the call instruction is executed.
That address is the value stored at address 0x40120160: 0x3170F000.

b. (4 points) What value does the base pointer (EBP) hold in this function? Explain your

answer.

Solution: The base pointer points to the location just above the saved return address—the
location where the previous function’s base pointer is stored. Since the return address is stored
at 0x40120160, the base pointer must hold the next address: 0x4012015C.

 6

3 (continued)
c. (4 points) If we assume that each local variable uses four bytes, and also assume that the

function saves no registers, how many local variables are declared in this function? Explain
your answer.

Solution: We know that the top of the stack is at address 0x40120154, since we’re given the
value of ESP. The local variables are stored between the top of the stack and the old base
pointer (which is at 0x4012015C, as discussed in (b)), so there are 2 local variables stored in
those 8 bytes.

d. (15 points) A partially completed x86 function is written below. Complete the function by

writing the appropriate instructions in the blank spaces provided. The comments next to each
blank or instruction describe the purpose of that instruction. Assume that the function takes
one argument, a1, and contains one local integer variable, v1.

f PROC ; Start of function f
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp

 sub esp, 4 ; Create space on stack for v1

 mov eax, DWORD PTR 8[ebp] ; eax = a1

 add eax, 10 ; eax = eax + 10 = a1 + 10

 mov DWORD PTR -4[ebp], eax ; v1 = eax = a1 + 10 (copy eax
 ; to memory location for v1)

 sub DWORD PTR -4[ebp], 20 ; v1 = v1 – 20 = a1 - 10

 idiv DWORD PTR -4[ebp] ; eax = eax / v1
 ; = (a1 + 10) / (a1 – 10)
 ; (use signed division; ignore
 ; remainder)

 mov esp, ebp ; Clear space allocated for
 ; local variable
 pop ebp ; Restore ebp

 ret ; Return from subroutine
f ENDP

 7

4. (40 points) Conditional instructions
For each part of this problem, write a short x86 code sequence that performs the specified
operation. (See original exam for full problem description.)

a. Implement the following conditional statement. You may assume that “X”, “Y”, and “Z” refer

to 16-bit variables stored in memory, which can be directly accessed using those names (for
example, MOV AX, X would move the contents of variable “X” to the register AX). Your
solution should not modify AX or BX.

if (AX >= 40) {
 Z = X – Y;
}
else {
 Z = X + Y;
 if (Z > 0)
 X = BX * 8;
 else
 X = BX / 4;
}

Solution: Other solutions may be valid.

 MOV DX, X ; Set Z = X using two MOV
 MOV Z, DX ; instructions
 ; Will either add or subtract
 ; Y later
 CMP AX, 40 ; Jump to else case if
 JL else ; !(AX >= 40) (if AX < 40)
 MOV DX, Y ; Subtract Y from X (since
 SUB Z, DX ; Z = X before the SUB)
 JMP done ; Skip else case
else:
 MOV DX, Y ; Add Y to X (since Z = X
 ADD Z, DX ; before the ADD)
 MOV X, BX ; Set X = BX (since X will be
 ; either BX * 8 or BX / 4)
 CMP Z, 0 ; If Z <= 0, jump to inner
 JLE else2 ; else case
 SLL X, 3 ; X = BX << 3 = BX * 23
 JMP done ; Skip inner else case
else2:
 SRA X, 2 ; X = BX >> 2 = BX / 22
done: ; End of code

 8

4 (continued)
b. Implement the following loop. Assume that ARR is an array of forty 16-bit values. The

starting address of this array is in the register SI when the loop starts—you can use that
register to help you access values within the array.

for (i = 39; i > 1; i = i - 2) {
 AX = ARR[i-1] + ARR[i-2];
 ARR[i] = AX - ARR[i];
}

Solution: Other solutions may be valid.

 MOV CX, 39 ; Initialize loop counter (CX is i)
L: LEA BX, [SI+2*CX] ; BX = address of ARR[i]
 MOV AX, [BX-2] ; AX = ARR[i-1]
 ADD AX, [BX-4] ; AX = ARR[i-1] + ARR[i-2]
 SUB AX, [BX] ; AX = AX – ARR[i] (OK to overwrite
 ; AX since you’ll calculate a new
 ; value for it in the next iteration
 MOV [BX], AX ; ARR[i] = AX – ARR[i]
 SUB CX, 2 ; CX = i – 2
 CMP CX, 1
 JG L ; Return to start of loop if i > 1

 9

4 (continued)
c. Implement the following loop. As in part (a), assume “X”, “Y”, and “Z” are 16-bit variables

in memory that can be accessed by name. Recall that a while loop is a more general type of
loop than the for loop seen in part (b)—a while loop simply repeats the loop body as long as
the condition tested at the beginning of the loop is true. Your solution should not modify AX.

while ((Y > 0) && (X < 0)) {

X = X + Z;
Y = Y – X;

 Z = Z + AX;
}

Solution: Other solutions may be valid.

L: CMP Y, 0 ; Exit loop if !(Y > 0) à if (Y <= 0)
 JLE done
 CMP X, 0 ; Exit loop if !(X < 0) à if (X >= 0)
 JGE done
 MOV DX, Z ; DX = Z
 ADD X, DX ; X = X + DX = X + Z
 MOV CX, X ; CX = X
 SUB Y, CX ; Y = Y – CX = Y – X
 ADD Z, AX ; Z = Z + AX
 JMP L ; Return to start of loop
done: ; End of code

