16.317: Microprocessor Systems Design I

Fall 2015

Exam 1 September 30, 2015

Name:	

For this exam, you may use a calculator and one 8.5" x 11" double-sided page of notes. All other electronic devices (e.g., cellular phones, laptops, PDAs) are prohibited. If you have a cellular phone, please turn it off prior to the start of the exam to avoid distracting other students.

The exam contains 5 questions. The first four questions will give you a total of 100 points; the fifth question is an extra credit problem worth 10 points. In order to receive any extra credit for Question 5, you must clearly demonstrate that you have made a significant effort to solve each of the first four questions.

Please answer the questions in the spaces provided. If you need additional space, use the back of the page on which the question is written and clearly indicate that you have done so.

You will be provided with two pages (1 double-sided sheet) of reference material for the exam: a list of the x86 instructions we have covered thus far. You do not have to submit this sheet when you turn in your exam.

You will have 50 minutes to complete this exam.

Q1: Multiple choice	/ 20
Q2: Data transfers and	/ 30
memory addressing	/ 30
Q3: Arithmetic instructions	/ 30
Q4: Logical instructions	/ 20
TOTAL SCORE	/ 100
Q5: EXTRA CREDIT	/ 10

1. (20 points, 5 points per part) *Multiple choice*

For each of the multiple choice questions below, clearly indicate your response by circling or underlining the single choice you think best answers the question.

- a. Given AL = A1h and CF = 1, what is the final result of the instruction ROR AL, 2?
 - i. AL = 43h, CF = 0
 - ii. AL = 68h, CF = 0
 - iii. AL = 86h, CF = 0
 - iv. AL = E8h, CF = 0
 - v. AL = 28h, CF = 0
- b. *(rotate thru carry)* Assuming A, B, C, and D are all signed integers, what compound condition does the following instruction sequence test?
 - MOV AX, A
 - ADD AX, B
 - CMP C, AX
 - SETLE BL
 - MOV AX, D
 - CMP AX, A
 - SETG BH
 - OR BL, BH
 - i. $(C \le B) \mid | (D > A)$
 - ii. $(C \le A) \mid (D > A)$
- iii. ($C \le A + B$) || (D > A)
- iv. $(C < A + B) \mid | (D > A)$
- v. (C <= A + B) || (D + B > A)

1 (continued)

- c. (bit test) If AX = OFFOh, which of the following instructions will set CF = 1?
 - A. BT AX, 3
 - B. BTR AX, 4
 - C. BTS AX, 15
 - D. BTC AX, 12
 - i. Only A
 - ii. Only B
- iii. A and D
- iv. B and C
- v. All of the above (A, B, C, D)

- d. (bit scan) If AX = 0808H, which of the following choices correctly shows the results of performing the two bit scan instructions (BSF and BSR) on this register?
 - i. BSF DX, AX \rightarrow ZF = 1, DX = 0008h
 - BSR DX, AX \rightarrow ZF = 1, DX = 0008h
 - ii. BSF DX, AX \rightarrow ZF = 1, DX = 0003h
 - BSR DX, AX \rightarrow ZF = 1, DX = 0004h
- iii. BSF DX, AX \rightarrow ZF = 0, DX = 0003h BSR DX, AX \rightarrow ZF = 0, DX = 000Bh
- iv. BSF DX, AX \rightarrow ZF = 1, DX = 0003h BSR DX, AX \rightarrow ZF = 1, DX = 000Bh
- v. BSF DX, AX \rightarrow ZF = 0, DX unchanged
- V. BSF DX, AX \rightarrow ZF = 0, DX unchanged BSR DX, AX \rightarrow ZF = 0, DX unchanged

2. (30 points) Data transfers and memory addressing

For each data transfer instruction in the <u>sequence</u> shown below, list <u>all</u> changed registers and/or memory locations and their final values. If memory is changed, be sure to explicitly list <u>all</u> <u>changed bytes</u>. Also, indicate if each instruction performs an aligned memory access, an unaligned memory access, or no memory access at all.

•			•		
l۳	11 1	12	l st	tai	Δ.
11		па	וכו	Lai	LU.

EAX: 000000000h	Address	Lo			Hi
EBX: 00000005h	93000h	B0	21	AA	36
ECX: FFFFFFCh	93004h	15	99	FE	0C
EDX: E7A83170h	93008h	CE	12	60	EB
ESI: 00093000h	9300Ch	89	0A	0B	FF
EDI: 00093010h	93010h	00	11	03	20
	93014h	80	17	A1	B8
	93018h	99	30	СВ	ED

Instructions:

MOVZX	EAX,	WORD	PTR	[EDI+ECX]	<u>Alı</u> ş	gned?	res .	No 1	Not a memory a	access
-------	------	------	-----	-----------	--------------	-------	-------	------	----------------	--------

3. (30 points) Arithmetic instructions

For each instruction in the <u>sequence</u> shown below, list <u>all</u> changed registers and/or memory locations and their new values. If memory is changed, be sure to explicitly list <u>all changed</u> <u>bytes</u>. Where appropriate, you should also list the state of the carry flag (CF).

<u>Initial state:</u>

EAX: 00000C16h	
EBX: 0000A037h	
ECX: 0000FFF9h	
EDX: 0000941Fh	

CF: 1

ESI: 00072300h

Address	Lo			Hi
72300h	C0	00	02	10
72304h	10	10	15	5A
72308h	89	01	05	B1
7230Ch	20	40	AC	DC
72310h	04	08	05	83
72314h	FF	99	B0	11

Instructions:

SUB DX, BX

ADD AX, DX

INC BYTE PTR [ESI+0000014h]

NEG CX

IMUL CL

4. (20 points) *Logical instructions*

For each instruction in the <u>sequence</u> shown below, list <u>all</u> changed registers and/or memory locations and their new values. If memory is changed, be sure to explicitly list <u>all changed</u> <u>bytes</u>. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:

EAX: 00008980h	Address	Lo			Hi
EBX: 0000FE92h	31700h	04	00	80	00
ECX: 00000003h	31704h	83	00	01	01
EDX: 000096B7h	31708h	05	01	71	31
CF: 0	3170Ch	20	40	60	80
	31710h	02	ΛΛ	ΔR	ΩF

Instructions:

SHR BX, CL

SAR AX, 5

XOR BX, AX

NOT AX

AND AX, DX

5. (10 points) *Extra credit*Complete the code snippet below by writing the appropriate x86 instruction into each of the blank spaces. The purpose of each instruction is described in a comment to the right of the blank.

; Move a signed byte ; from address 2150h & ; extend it to fill EB	
; Multiply EBX by 64 ar ; store the result in ; EBX, in 1 instruction	
 ; Set EDI equal to the ; sum of EBX and (ECX ; multiplied by 4) in ; single instruction	a
; Access a byte at the ; address stored in EI; and copy its most ; significant bit into ; the carry flag	
; Move the value in the ; carry flag into the ; least significant bi ; of AL (you may chang ; other bits of AL)	Ĺt
; Find the position of ; the rightmost (least ; significant) nonzero ; bit in AL, and store ; that position in CL)
; Invert the upper 8 ; bits of EDX without ; changing any other ; bits in 1 instruction	on
; Swap the 4 upper bits; and 4 lower bits of; AH in 1 instruction	3
; Use the value in CL ; to shift EDX to the ; right while keeping ; the sign intact	
; Copy the rightmost bi ; of EDX into the carr ; flag, then invert ; that bit	