
 1

16.317: Microprocessor Systems Design I
Fall 2014

Exam 2 Solution

1. (16 points, 4 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. Which of the following statements about interrupts and exceptions are true?

A. All external interrupts can be disabled so that an interrupt service routine is not called

when an external device asserts an interrupt input pin.

B. An interrupt vector is the starting address of an interrupt service routine. Interrupt
vectors are typically stored in a table located in memory.

C. When an interrupt occurs, the interrupt service routine is responsible for saving the

processor state (all registers, including the flags).

D. Most processors have both dedicated interrupt vectors for specific types of interrupts
and general vectors to be used with user-defined interrupts.

i. Only A

ii. Only B

iii. A and C

iv. B and D

v. All of the above (A, B, C, and D)

 2

1 (continued)

b. If the working register is set to 0x10 and a file register, x, is set to 0x08, what is the result
of the instruction subwf x, W?

i. W = 0x08

ii. x = 0x08

iii. W = 0xF8

iv. x = 0xF8

c. Which of the following instructions will set the zero bit (Z) to 1 if the file register x is equal

to 0?

A. movwf x

B. movf x, F

C. bcf x, 0

D. addlw 0x00

i. Only A

ii. Only B

iii. A and B

iv. A, B, and C

v. A, B, C, and D

 3

1 (continued)
d. Which of the following instructions can always be used to set (in other words, change to 1)

the upper four bits of the working register, W, while leaving the lower four bits of the
register unchanged?

i. clrw

ii. sublw 0x0F

iii. iorlw 0xF0

iv. xorlw 0x0F

v. andlw 0xF0

 4

2. (16 points) Reading PIC assembly
Show the result of each PIC 16F1829 instruction in the sequences below. Be sure to show the
state of the carry (C) bit for any shift or rotate operations.

cblock 0x75
x

 endc

movlw 0x79 W = 0x79

movwf x x = W = 0x79

comf x, W W = ~x = ~0x79
 = ~(0111 10012) = 1000 01102 = 0x86

lslf x, F x = x << 1 = 0x79 << 1
 = 0111 10012 << 1 = 1111 00102 = 0xF2
 C = bit shifted out = 0

addwf x, W W = x + W = 0xF2 + 0x86 = 0x78

btfss x, 6 Skip next instruction if bit 6 of x = 1
  x = 0xF2 = 1111 00102  bit 6 = 1  skip

sublw 0x99 Instruction skipped

xorwf x, F x = x XOR W = 0xF2 XOR 0x78
 = 1111 00102 XOR 0111 10002

 = 1000 10102 = 0x8A

 5

3. (28 points) Subroutines; HLL  assembly
The following questions deal with the register and memory contents shown below. Note that:

• These values represent the state of the registers and stack immediately after the stack
frame has been set up for the current function.

• The values shown in memory make up the entire stack frame for the current function.

EAX: 0x0000ABBA
EBX: 0x00001234
ECX: 0x00005099
EDX: 0xFFFFFFFF
ESI: 0x11340550
EDI: 0x11340590
ESP: 0x11320140
EBP: 0x1132014C

Address
0x11320140 0x00000005
0x11320144 0x0000000A
0x11320148 0xFFFF0000
0x1132014C 0x11320164
0x11320150 0x20010550
0x11320154 0x00000002
0x11320158 0x08675309
0x1132015C 0x00000088
0x11320160 0x00197800

a. (3 points) What is the return address for this function?

As shown in the stack frame diagram given with the exam, the return address (“old %EIP”) for
the function is stored at address EBP+4, which, in this case, is 0x11320150. Therefore, the
return address for the function is 0x20010550.

b. (5 points) How many arguments does this function take, and what are their values? Indicate

which of the arguments is passed to the function first (for example, when calling a function
f(13, 14, 15), the value 13 is passed first). Assume each argument uses four bytes.

The arguments to the function are stored at the highest addresses within the frame, starting at
address EBP+8 (0x11320154). Since the problem specifies that the entire stack frame is shown,
we can say that there are 4 arguments to this function, with values 0x00000002, 0x08675309,
0x00000088, and 0x00197800. The argument at the highest address is passed first—
0x00000002.

 6

3 (continued)
c. (5 points) If we assume that each local variable uses four bytes, how many local variables are

declared in this function? Explain your answer.

The lowest addresses within the stack frame contain two types of data: saved registers and local
variables. You are told that the values shown represent the state of the stack immediately after
the stack frame has been set up. Since none of the topmost values on the stack match the register
values, we can infer that this function saves no registers. Therefore, all values with lower
addresses than the base pointer are local variables. Since EBP = 0x1132014C and ESP =
0x11320140, a difference of 12 bytes, there are 12 / 4 = 3 local variables in this function.

d. (15 points) A partially completed x86 function is written below. Complete the function by
writing the appropriate instructions in the blank spaces provided. The comments next to each
blank or instruction describe the purpose of that instruction. Assume that the function takes
two arguments (v1 and v2, in that order) and contains a single local integer variable, x.

f PROC ; Start of function f
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp

 sub esp, 4 ; Create space on stack for x

 mov ebx, DWORD PTR 8[ebp] ; ebx = v1

 sub ebx, DWORD PTR 12[ebp] ; ebx = v1 - v2

 mov DWORD PTR -4[ebp], ebx ; x = ebx = v1 - v2 (copy ebx
 ; to memory location for x)
 sll ebx, 4 ; ebx = ebx << 4 = x << 4

 sub ebx, DWORD PTR -4[ebp] ; ebx = ebx – x = (x << 4) – x

 mov esp, ebp ; Clear space allocated for
 -or- add esp, 4 ; local variable
 pop ebp ; Restore ebp

 ret ; Return from subroutine
f ENDP

 7

4. (40 points) Conditional instructions
For each part of this problem, write a short x86 code sequence that performs the specified
operation. CHOOSE ANY TWO OF THE THREE PARTS and fill in the space provided with
appropriate code. You may complete all three parts for up to 10 points of extra credit, but
must clearly indicate which part is the extra one—I will assume it is part (c) if you mark
none of them.

Note also that your solutions to this question will be short sequences of code, not subroutines.
You do not have to write any code to deal with the stack when solving these problems.

a. Implement the following conditional statement. You may assume that “X”, “Y”, and “Z” refer

to 16-bit variables stored in memory, which can be directly accessed using those names (for
example, MOV AX, X would move the contents of variable “X” to the register AX).

if ((X == AX) && (Y == BX) {
 Z = Z / 2;
}
else {
 Z = Z * 4;
 if (Z > X)
 X = Z;
}

Solution: Other solutions may be valid.

 CMP X, AX
 JNE L1 ; Jump to else if X != AX
 CMP Y, BX
 JNE L1 ; Jump to else if Y != BX

SHR Z, 1 ; if case: Z >> 1 is same as Z / 2
 ; Use SAR if assuming Z signed
 JMP L2 ; Skip else case
L1: SHL Z, 2 ; else case: Z << 2 same as Z * 4
 MOV DX, Z ; DX = Z
 CMP DX, X ; Compare Z to X (since DX = Z)
 JLE L2 ; Jump if Z is not greater than X
 MOV X, DX ; X = DX = Z
L2: ; End of statement

 8

4 (continued)
b. Implement the following loop. Assume that ARR is an array of forty 32-bit values. The

starting address of this array is in the register SI when the loop starts—you can use that
register to help you access values within the array.

for (i = 40; i > 0; i = i - 2) {
 ARR[i-1] = ARR[i-2] + i;
 ARR[i-2] = ARR[i-1] – i;
}

Solution: Other solutions may be correct. Note that the second line in the body of the loop—and
therefore the associated instructions—is completely unnecessary, as it simply overwrites
ARR[i-2] with its original value, since ARR[i-1] = ARR[i-2] + i, making ARR[i-1] – i equal to
(ARR[i-2] + i) – i = ARR[i-2]

 MOV ECX, 40 ; Let ECX = i; initialize to 40
L: LEA EDX, [SI+4*ECX] ; EDX = address of ARR[i]
 MOV EAX, [EDX-8] ; EAX = ARR[i-2]
 ADD EAX, ECX ; EAX = ARR[i-2] + i
 MOV [EDX-4], EAX ; ARR[i-1] = ARR[i-2] + 1

 ; Note: next 2 instructions unnecessary as described above
 SUB EAX, ECX ; EAX = ARR[i-1] – i
 MOV [EDX-8], EAX ; ARR[i-2] = ARR[i-1] – i
 SUB ECX, 2 ; i = i – 2
 JNZ L ; Return to start of loop if i > 0

 9

4 (continued)
c. Implement the following loop. As in part (a), assume “X”, “Y”, and “Z” are 16-bit variables

in memory that can be accessed by name. Recall that a while loop is a more general type of
loop than the for loop seen in part (b)—a while loop simply repeats the loop body as long as
the condition tested at the beginning of the loop is true.

while (X >= Y) {
 Y = Y + Z – 1;
 X = X – Z + 1;
}

Solution: Other solutions may be correct.

 MOV DX, Z ; Z = DX
L: MOV AX, X ; AX = X
 CMP AX, Y ; Compare X & Y
 JL FIN ; Jump to end if X < Y
 ADD Y, DX ; Y = Y + DX = Y + Z
 DEC Y ; Y = Y – 1 = Y + Z – 1
 SUB X, DX ; X = X – DX = X – Z
 INC X ; X = X + 1 = X – Z + 1
 JMP L ; Return to start of loop
FIN: ... ; End of statement

	Fall 2014
	Exam 2 Solution

