
 1

16.317: Microprocessor Systems Design I
Fall 2013

Exam 2 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

For all parts of the question, assume you have an x86 processor running in protected mode.

a. Which of the following selector values indicate that the given segment is in global memory?

A. SS = 0138h
B. DS = FF13h
C. GS = 118Bh
D. ES = 5371h

i. A and C

ii. B and D

iii. A, B, and C

iv. All of the above (A, B, C, and D)

v. None of the above

 2

1 (continued)

b. Which of the following statements about local memory accesses in protected mode are true?

A. The LDTR is a selector that points to a descriptor in the global descriptor table; that
descriptor provides information about the current local descriptor table.

B. The LDTR stores the base address and limit (maximum offset) for the current local
descriptor table.

C. The LDTR is changed every time a task makes an access to local memory.

D. The LDTR cache stores the base address and limit for the current local descriptor
table.

i. Only A

ii. Only B

iii. A and D

iv. B and C

v. B, C, and D

 3

1 (continued)
Again, assume you have an x86 processor running in protected mode. Parts (c) and (d) of the
question refer to the following table, which shows the current local descriptor table. The
descriptor shown at address 18800000h is the first descriptor in this table.

Memory Address
Base = 11308100h
Limit = 0007h

18800000h

Base = 1578AA00h
Limit = 0FFFh

18800008h

Base = 33731700h
Limit = 0027h

18800010h

Base = 54440000h
Limit = FFFFh

18800018h

Base = 09AC2200h
Limit = 00FFh

18800020h

Base = 35700100h
Limit = 007Fh

18800028h

c. If DS = 000F, what is the starting address of the current data segment?

i. 000F0h

ii. 11308100h

iii. 1578AA00h

iv. 18800008h

v. DEADBEEFh

d. Say the selector SS breaks down as follows: requested priority level (RPL) = 3, table
indicator (TI) = 1, index = 3. If ESP = 0000FFC0h, what linear address corresponds to the
logical address SS:ESP?

i. 0000FFC0h

ii. 1880FFD8h

iii. 54440000h

iv. 5444FFC0h

v. ABAD1DEAh

 4

2. (40 points) Subroutines; HLL  assembly
The following questions deal with the simple C function shown below, which takes two integer
arguments (v1 and v2), contains one local variable (x) and returns the value shown:
 int f(int v1, int v2) {
 int x = v1 – v2;
 return (x << 4) - x;
 }

a. (16 points) Draw the stack frame for this function if it is called with 10 and 2 as its

arguments (in other words, a program contains the function call f(10, 2)). Be as specific
as possible—in particular:

• Show all known values—if, for example, the argument v1 is equal to 20, write the value
20 in your diagram, not the argument name v1.

• For all arguments or variables with unknown values, write the argument or variable name.

• Clearly indicate where the stack pointer (esp) and base pointer (ebp) point in the current
stack frame. You do not need to know the values of these registers.

Assume the function saves the register ebx on the stack, since it overwrites that register.

Solution: As the diagram below shows, the stack frame is set up as follows:

• Arguments are passed first, in reverse order.

• The return address (“saved EIP”) of the function is pushed when the function is called.

• The old value of the base pointer (“old EBP”) is pushed next.

• Space for local variable x is then created.

• The register ebx is saved last.

• After the stack frame is set up, EBP should point to the saved copy of its previous value;
while ESP points to the top value on the stack (the saved version of EBX)

High addresses

 v2 = 2
 v1 = 10
 Saved EIP
EBP  Old EBP
 x
ESP  ebx

Low addresses

 5

2 (continued)
b. (24 points) A partially completed x86 assembly version of this function is written below.

Complete the function by writing the appropriate instructions in the blank spaces provided.
The comments next to each blank or instruction describe the purpose of that instruction.

The C version of the function is provided below for your reference. Note that a variable of
type int is a 32-bit signed integer.

int f(int v1, int v2) {
 int x = v1 – v2;
 return (x << 4) – x;
 }

f PROC ; Start of function f
 push ebp ; Save ebp
 mov ebp, esp ; Copy ebp to esp

 sub esp, 4 ; Create space on stack for x

 push ebx ; Save ebx on the stack

 mov ebx, DWORD PTR 8[ebp] ; ebx = v1

 sub ebx, DWORD PTR 12[ebp] ; ebx = v1 - v2

 mov DWORD PTR -4[ebp], ebx ; x = ebx = v1 - v2 (copy ebx
 ; to memory location for x)
 sll ebx, 4 ; ebx = ebx << 4 = x << 4

 sub ebx, DWORD PTR -4[ebp] ; ebx = ebx – x = (x << 4) - x

 pop ebx ; Restore ebx

 mov esp, ebp ; Clear space allocated for
 (or add esp, 4) ; local variable
 pop ebp ; Restore ebp

 ret ; Return from subroutine
f ENDP

 6

3. (40 points) Conditional instructions
For each part of this problem, write a short x86 code sequence that performs the specified
operation. CHOOSE ANY TWO OF THE THREE PARTS and fill in the space provided with
appropriate code. You may complete all three parts for up to 10 points of extra credit, but
must clearly indicate which part is the extra one—I will assume it is part (c) if you mark
none of them.

a. Implement the following conditional statement. You may assume that “X” and “Y” refer to

16-bit variables stored in memory, which can be directly accessed using those names (for
example, MOV AX, X would move the contents of variable “X” to AX).

if (X > 10) {
 if (Y > 0) {
 DX = X;
 }
 else {
 DX = Y;
 }
}
else
 DX = 0;

Solution:
 CMP X, 10 ; If Y is not less than 10,
 JLE L2 ; go to L2 (outer "else" case)
 CMP Y, 0 ; Outer if case: test Y
 JLE L1 ; If Y is not greater than 0, go to L1
 ; (inner "else" case)
 MOV DX, X ; Inner "if" case: DX = X
 JMP L3 ; Skip to end of statement
L1: MOV DX, Y ; Inner "else" case: DX = Y
 JMP L3 ; Skip to end of statement
L2: MOV DX, 0 ; Outer "else" case: DX = 0
L3: ... ; End of statement

 7

3 (continued)
b. Implement the following loop. Assume that ARR is an array of 11 16-bit values. The starting

address of this array is in the register SI when the loop starts—you can use that register to
help you access values within the array.

for (i = 0; i <= 10; i++) {
 ARR[i] = ARR[i] + AX;
 AX = BX – ARR[i];
}

Solution: Note that this solution assumes that CX holds the value of “i”.

 MOV CX, 0 ; Initialize CX = i = 0
L: CMP CX, 10 ; If CX is not less than or equal to 10
 JG EXITL ; exit loop
 ADD [SI+2*CX], AX ; ARR[i] = ARR[i] + AX
 MOV AX, BX ; AX = BX
 SUB AX, [SI+2*CX] ; AX = BX – ARR[i]
 INC CX ; i++
 JMP L ; Return to start of loop
EXITL: ... ; Label at end of loop

 8

3 (continued)
c. Implement the following loop. As in part (a), assume “X” and “Y” are 16-bit variables in

memory that can be accessed by name.

while (X < Y) {
 X = X + 1;
 Y = Y – 1;
}

Solution:

L: MOV AX, X ; AX = X
 CMP AX, Y ; Compare X to Y; if X is not less than
 JGE EXITL ; Y, exit loop
 INC X ; X = X + 1
 DEC Y ; Y = Y + 1
 JMP L ; Return to start of loop
EXITL: ... ; End of loop

	Fall 2013
	Exam 2 Solution

