
16.317: Microprocessor Systems Design I
Fall 2013

Exam 1 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the single choice you think best answers the question.

a. If AX = 0FF0h, which of the following instructions will set CF = 1 and change AX to

0EF0h?

A. BTR AX, 8
B. BT AX, 8
C. BTC AX, 8
D. BTS AX, 8

i. A and C

ii. A and D

iii. B and C

iv. B and D

v. None of the above

 2

1 (continued)

b. If AX = 1001H, which of the following choices correctly shows the results of performing
the two bit scan instructions (BSF and BSR) on this register?

i. BSF DX, AX  ZF = 1, DX = 0000h

BSR DX, AX  ZF = 1, DX = 000Ch

ii. BSF DX, AX  ZF = 1, DX = 0000h
BSR DX, AX  ZF = 1, DX = 0003h

iii. BSF DX, AX  ZF = 0, DX = 0000h
BSR DX, AX  ZF = 0, DX = 000Ch

iv. BSF DX, AX  ZF = 1, DX = 000Ch
BSR DX, AX  ZF = 1, DX = 0000h

v. BSF DX, AX  ZF = 0, DX unchanged

BSR DX, AX  ZF = 0, DX unchanged

c. If AX = 000Fh and CF = 0, initially, what is the result of the instruction ROR AX, 4?

i. AX = 00F0h, CF = 0

ii. AX = F000h, CF = 1

iii. AX = E000h, CF = 1

iv. AX = 0000h, CF = 1

v. AX = 00FFh, CF = 1

 3

1 (continued)
d. If AX = 0001h and CF = 1, initially, what is the result of the instruction RCL AX, 2?

i. AX = 0000h, CF = 0

ii. AX = 0003h, CF = 0

iii. AX = 0004h, CF = 0

iv. AX = 0006h, CF = 0

v. AX = 1000h, CF = 1

 4

2. (30 points) Data transfers and memory addressing
For each data transfer instruction shown below, list all changed registers and/or memory
locations and their final values. If memory is changed, be sure to explicitly list all changed
bytes. Also, indicate if each instruction performs an aligned memory access, an unaligned
memory access, or no memory access at all.

Initial state:
EAX: 00000000h
EBX: 00000006h
ECX: 00000001h
EDX: 0000FF00h
ESI: 0000F000h
EDI: 00001000h
DS: 9300h
ES: 9200h

Address Lo Hi
93000h B0 21 AA 36
93004h 15 99 FE 0C
93008h CE 12 60 EB
9300Ch 89 0A 0B FF
93010h 00 11 03 20
93014h 08 17 A1 B8
93018h 99 30 CB ED

Instructions:

MOV ES:[DI+10h], BL Aligned? Yes No Not a memory access
 EA = DI + 0010h = 1000h + 0010h = 1010h
 SBA = 92000h (access ES)
 LA = SBA + EA = 92000h + 1010h = 93010h
 Byte @ 93010h = BL = 06h

LEA DI, [SI+4*CX] Aligned? Yes No Not a memory access
 EA = SI + (4 * CX) = F000h + (4 * 0001h) = F004h
 DI = EA = F004h

MOV AX, [SI+1003h] Aligned? Yes No Not a memory access
 EA = SI + 1003h = F000h + 1003h = 10003h (EA is only 16 bits)
 SBA = 93000h (access DS)
 LA = SBA + EA = 93000h + 0003h = 93003h
 AX = word @ 93003h = 1536h

MOVZX EDX, BYTE PTR ES:[BX+1000h] Aligned? Yes No Not a memory access
 EA = BX + 1000h = 0006h + 1000h = 1006h
 SBA = 92000h (access ES)
 LA = SBA + EA = 92000h + 1006h = 93006h
 EDX = zero-extended byte @ 93006h = 000000FEh

MOVSX EBX, WORD PTR [000Eh] Aligned? Yes No Not a memory access
 EA = 000Eh
 SBA = 93000h (access DS)
 LA = SBA + EA = 93000h + 000Eh = 9300Eh
 EBX = sign-extended word at 9300Eh = FFFFFF0Bh

 5

3. (25 points) Arithmetic instructions

For each instruction in the sequence shown below, list all changed registers and/or memory
locations and their new values. If memory is changed, be sure to explicitly list all changed
bytes. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:
EAX: 0000FFF7h
EBX: 000000A4h
ECX: 00000003h
EDX: 0000FFFEh
CF: 1
ESI: 00000004H
DS: 3170H

Address Lo Hi
31700H 04 00 08 00
31704H 83 00 01 01
31708H 05 01 71 31
3170CH 20 40 60 80
31710H 02 00 AB 0F
31714H 00 16 11 55

Instructions:
SBB BX, [SI]

 EA = SI = 0004H; SBA = 31700 (access DS)  LA = 31704h
 BX = BX - word at 31704h - CF
 = 00A4h - 0083h - 1 = 0020h

ADD AX, BX

 AX = AX + BX = FFF7h + 0020h = 0017h
 CF = 1

DEC AX

 AX = AX - 1 = 0016h

IDIV CL

 AL = AX / CL = 0016h / 03h = 22 / 3 = 7 = 07h
 AH = AX % CL (remainder) = 22 % 3 = 1 = 01h

NEG DL

 DL = -DL = -FEh = -(1111 11102)
 = 0000 00012 + 1 = 0000 00102 = 02h

 6

4. (25 points) Logical instructions

For each instruction in the sequence shown below, list all changed registers and/or memory
locations and their new values. If memory is changed, be sure to explicitly list all changed
bytes. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:
EAX: 000000E7h
EBX: 00003300h
ECX: 00000002h
EDX: 0000F63Ch
CF: 0
DS: 7230h

Address Lo Hi
72300h C0 00 02 10
72304h 10 10 15 5A
72308h 89 01 05 B1
7230Ch 20 40 AC DC
72310h 04 08 05 83

Instructions:
XOR AL, [0DH]

 LA = SBA + EA = 72300h + 0Dh = 7230Dh
 AL = AL XOR (byte at 7230Dh) = E7h XOR 40h = A7h

AND AL, BH

 AL = AL AND BH = A7h AND 3Ch = 23h

ROR AL, CL

 AL = AL rotated right 2 bits (since CL = 2)
 = 23h rotated right 2 bits = 0010 00112 rot. right 2 bits
 = 1100 10002 = C8h
 CF = copy of last bit rotated out = 1

SAR AL, 4

 AL = AL >> 4 (arithmetic shift)
 = C8h >> 4 = 1100 10002 >> 4 = 1111 11002 = FCh
 CF = last bit shifted out = 1

RCL AL, 3

 AL = AL rotated left through carry 3 bits
 (CF,AL) = 1 1111 11002 rotated left 3 bits
 = 1 1110 01112
 AL = 1110 01112 = E7h, CF = 1

 7

5. (10 points) Extra credit
Complete the program below by writing the appropriate x86 instruction into each of the blank
spaces. The purpose of each instruction is described in a comment to the right of the blank.

MOV AX, 6317h ; Use two instructions
 ; to establish 63170h
 ; as the starting address
MOV DS, AX ; of the data segment

LES SI, [0000h] ; Load the first two

; bytes stored in
; the current data
; segment into SI,
; and the next two
; bytes into ES

LEA DI, [SI+1000h] ; Set DI = SI + 1000h
 ; using a single
 ; instruction

MOV AX, ES:[SI] ; Load two bytes of data
 ; into AX from the

; extra segment (ES),
; starting at offset
; specified by SI

MOV BX, ES:[SI+2] ; Load the next two

; bytes of data from
; the extra segment
; into BX

ADD AX, BX ; Find the sum of the
 ; previous two values

SAR AX, 1 ; Divide the result of
 ; the previous
 ; instruction by 2
 ; without using a
 ; divide instruction
 ; Keep the sign intact

MOV ES:[DI], AX ; Store the previous

; instruction’s result
; into the extra
; segment at offset
; specified by DI

	Fall 2013
	Exam 1 Solution

