
16.317: Microprocessor Systems Design I
Spring 2013

Lab 2: Assembly Language Programming
Due Friday, 4/5/13

Introduction
In this lab, you will learn how to develop and debug your own assembly language program.
This program will sort three positive hexadecimal integers, each of which can range from 0 to
F. The program should follow the steps listed below:

1. Print a prompt (“Enter first number”) on the screen; get ready for the first input.
2. Get the first integer from the keyboard. The input will be a one-digit hexadecimal

number ranging from 0 to F.
3. Print a prompt (“Enter second number”) on the screen; get ready for the second input.
4. Obtain the second hexadecimal number (0 through F) from the keyboard.
5. Print a prompt (“Enter third number”) on the screen, get ready for the third input.
6. Obtain the third hexadecimal number (0 through F) from the keyboard.
7. Sort these three numbers.
8. Print the sorted numbers on the screen in ascending order. The results should also be

in hexadecimal.

For up to 10 bonus points, modify your program to handle two-digit hexadecimal numbers
(such as “2F”) as inputs.

Remember that each student must generate an individual report that follows the
guidelines listed in the “Lab Report Format Guidelines”, and that the last page of this
assignment contains a cover page each student must use as the first page of that report.

Reference
Walter A. Triebel and Avtar Singh, Lab Manual to Accompany the 8088 and 8086
Microprocessors, Prentice Hall, ISBN 0-13-012843-0.

16.317: Microprocessor Systems Design I Instructor: M. Geiger
UMass Lowell Lab 2

 2

Part 1: Input/Output Tutorial
Input and output can be handled using a software interrupt (interrupt #21H) that invokes DOS
routines. The number of the routine, which is passed in register AH, specifies the function to
be performed by the operating system. The examples below show how to use this interrupt to
print a string, read a single character, and print a single character.

Printing a message to the screen
The following small program shows how to print a line of message on the screen, using the
DOS service with function number 9. The string must end with ‘$’. If you’d like to print a
character, please refer to the section below on printing a single character.

.model small

.stack

.data
Message db "Hello World!$" ; message to be displayed
.code
start:
mov dx,OFFSET Message ; offset of Message in DX
mov ax,SEG Message ; segment of Message in AX
mov ds,ax ; DS:DX points to string
mov ah,9 ; function 9 –

; display string
int 21h ; call DOS service to

; print the string
mov ax,4c00h ; return to dos DOS
int 21h
END start ;end here

Reading a single character
Invoking the DOS service with function number 1 will call a function that waits for a key to
be pressed, then stores the ASCII value of the entered character in AL.

mov ah, 1 ; function 1h - get
; character

int 21h ; call DOS service to
; get a character
; Character will be in AL
; at this point

Writing a single character
Function number 2 will print a character to the screen, assuming the ASCII value of that
character is stored in AL when the interrupt is invoked.

mov dl, al ; move al (ascii code)
; into dl - required
; for function 02h

mov ah, 02h ; function 2h – print
; character

int 21h ; call DOS service to
 ; print a character

16.317: Microprocessor Systems Design I Instructor: M. Geiger
UMass Lowell Lab 2

 3

Part 2: Creating your Program
We suggest following the steps and hints below to write your program:

1. Make sure you clearly understand the problem and have completed the tutorial.

2. The program Lab3sk2.asm posted on the website contains skeleton code that can
be modified to complete this assignment.

3. Once the inputs have been obtained the keyboard, you must convert them from
ASCII code to the actual numeric value. For example, “2” entered from the keyboard
is coded as 32H in ASCII, but your program should work with that number as a
numeric value. Consider using a subroutine to do this conversion. You can assume
only numbers and uppercase letters are possible inputs.

• Note: While the conversion is not strictly necessary to sort one digit numbers,
it is necessary for sorting two digit numbers.

4. Draw a flowchart to guide your implementation of the sorting algorithm in assembly
language. You must include this flowchart in your final report.

5. After completing your .asm file, you can assemble and link it to generate an
executable, which you can then run using DEBUG. Chapter 7 of the text contains
details on assembly and linking, but we’re doing things slightly differently:

• The assembler name is TASM, and can be found on any of the lab machines in the
directory C:\TASM, or at the following link:

http://trimtab.ca/2010/tech/tasm-5-intel-8086-turbo-assembler-download/
This program will convert your assembly code to an object format, and will allow
you to discover any syntax errors in your code.

• To generate an object (.obj) file with the same name as your .asm file, type
TASM <.asm file name>.

o You may need to specify the full path for the assembler
(C:\TASM\TASM) and/or your .asm file

o Example: C:\TASM\TASM Lab3sk2.asm
 This example assumes you’re in the directory containing

Lab3sk2.asm.
• To specify a different name for your .obj file, type that new file name after the

name of the .asm file.
o Example: C:\TASM\TASM Lab3sk2.asm newfile.obj

• If you would like to generate a listing file (.lst) as well, type the name of the
desired listing file after the .obj file name:

o Note that you must list an object file name before the listing file name—
otherwise, the assembler assumes that the second file is your object file.

o Example: C:\TASM\TASM Lab3sk2.asm Lab3.obj Lab3.lst
• To create an executable (.exe file) that can be tested using DEBUG, use the

linker TLINK, which is found in the same directory as the assembler:

o Example: C:\TASM\TLINK Lab3.obj Lab3.exe

http://trimtab.ca/2010/tech/tasm-5-intel-8086-turbo-assembler-download/

16.317: Microprocessor Systems Design I
Lab 2: Assembly Language Programming

You must include this sheet as the cover page of your lab report. Fill in your name and
your partner’s name (if applicable). The table below provides the grading rubric for this
assignment, as well as space for an instructor to record your grade for each section.

Student name: _____________________________ Student ID # _________________

Partner’s name: ______________________________

Grading rubric

Item Description Max
points

Actual
points

Formatting Your report contains all required sections and
is of sufficient length

5

.asm file You include your .asm file as part of your
submission

NOTE: Without the .asm file, assessing
many of the points below is impossible.
Failure to submit your code will result in
deductions in those sections as well.

5

Prompt Print out prompts on screen 10
Keyboard
inputs

Correctly read inputs from keyboard 20

Conversion Correctly convert ASCII characters to
hexadecimal values

10

Sorting Sort numbers properly 20
Output Print sorted numbers on screen 10
Flowchart Include a detailed flowchart in your report that

shows, at a minimum, the sorting algorithm
10

Comments Your source code must contain detailed
comments

10

Bonus Modify your program to handle 2-digit
numbers

10

TOTAL
100
(110
with
bonus)

	Introduction
	Reference
	Part 1: Input/Output Tutorial
	Input and output can be handled using a software interrupt (interrupt #21H) that invokes DOS routines. The number of the routine, which is passed in register AH, specifies the function to be performed by the operating system. The examples below show h...
	Printing a message to the screen
	END start ;end here
	Reading a single character
	Invoking the DOS service with function number 1 will call a function that waits for a key to be pressed, then stores the ASCII value of the entered character in AL.
	Part 2: Creating your Program

