EECE.3170: Microprocessor Systems Design I

Fall 2019

Homework 4
Due Wednesday, 10/30/19-NO LATE SUBMISSIONS

Notes:

- All of your work should be submitted using the appropriate link in Blackboard.
- While typed solutions are preferred, handwritten solutions are acceptable. However, your handwritten work must be scanned and submitted electronically.
- Your submission must be in a single file. Archive files will not be accepted-if you're scanning handwritten pages, combine all pages in a Word document or PDF file.
- This assignment is worth 100 points.
- We will not accept late submissions for this assignment.

Each of the questions on the next two pages asks you to convert a high-level code sequence to $x 86$ assembly. Please note that each of these code sequences is part of a larger function-do not worry about any of the function call and stack frame details discussed during lectures 20-22.

1. (25 points) Implement the following conditional statement. You may assume that " X ", " Y ", and " Z " refer to 16 -bit variables stored in memory, which can be directly accessed using those names (for example, MOV AX, X would move the contents of variable " X " to AX). Your solution should not modify AX or BX.
```
if (AX >= 40) {
    Z = X - Y;
}
else {
    Z = X + Y;
    if (Z > 0)
        X = BX * 8;
    else
        X = BX / 4;
}
```

2. (25 points) Implement the following loop. As in question 1, assume " X " is a 16-bit variable in memory that can be accessed by name. (Hint: Any loop that executes the correct number of iterations is acceptable-you do not necessarily have to change your loop counter in exactly the same way as the for loop, since i is not used in the body of the loop.)
```
for (i = 0; i < X; i++) {
    AX = AX + X;
    BX = BX - X;
    if (AX == BX)
        break; // Exit loop early
    }
```

3. (25 points) Implement the following conditional statement. As in question 1 , assume " X " and " Y " are 16 -bit variables in memory that can be accessed by name. (Note: Make sure you carefully count the parentheses to make sure you combine conditions correctly!)
```
if ((AX < X && BX < Y) || (AX > Y && BX > X)) {
    AX = AX - BX;
}
```

4. (25 points) Implement the following loop. As in previous questions, assume " X ", " Y ", and " Z " are 16 -bit variables in memory that can be accessed by name. Recall that a while loop is a more general type of loop than the for loop seen in question 2-a while loop simply repeats the loop body as long as the condition tested at the beginning of the loop is true.
```
while (X >= Y) {
    Y = Y + Z - 1;
    X = X - Z + 1;
}
```

