# EECE.3170: Microprocessor Systems Design I 

## Fall 2019

## Homework 2

## Due Wednesday, 9/25/19

## Notes:

- All of your work should be submitted using the appropriate link in Blackboard.
- While typed solutions are preferred, handwritten solutions are acceptable. However, your handwritten work must be scanned and submitted electronically.
- Your submission must be in a single file. Archive files will not be accepted-if you're scanning handwritten pages, combine all pages in a Word document or PDF file.
- This assignment is worth 100 points.

Assume the state of an x86 processor's registers and memory are:

EAX: 0xEECE3170
EBX: 0x00000001
ECX: 0x00000002
EDX: 0x00000004
ESI: 0x00020100
EDI: 0x00020110

| Address | Lo |  | Hi |  |
| :---: | :---: | :---: | :---: | :---: |
| 0x20100 | 10 | 00 | 08 | 00 |
| 0x20104 | 10 | 10 | FF | FF |
| 0x20108 | 08 | 00 | 19 | 91 |
| 0x2010C | 20 | 40 | 60 | 80 |
| 0x20110 | 02 | 00 | AB | OF |
| 0x20114 | 30 | 99 | 11 | 55 |
| 0x20118 | 40 | AA | 7C | EE |
| 0x2011C | FF | BB | 42 | D2 |
| 0x20120 | 30 | CC | 30 | 90 |

What is the result of each of the instructions listed below? Assume that the instructions execute in sequence-in other words, the result of each instruction may depend on the results of earlier instructions. Correctly evaluating each instruction will earn you $\mathbf{1 0}$ points.

Note that you may assume any constant values shown using less than 32 bits are zero-extended to 32 bits if necessary (for example, 0x000F $=0 x 0000000 \mathrm{~F}$ ).

```
MOV DL, 0xFE
MOV DH, AL
MOVSX BX, BYTE PTR [ESI+0x000F]
MOV [EDI+ECX], EBX
MOV [ESI+4*ECX], AX
XCHG CL,[ESI]
MOVZX EAX, WORD PTR [EDI+ECX]
MOV DX,[EDI+0xFFFFFFFA]
LEA ECX,[ESI+EBX+0x0017]
MOVSX EBX, BYTE PTR [ESI+4]
```

