The following pages contain references for use during the exam: tables containing the x86
instruction set (covered so far) and condition codes. You do not need to submit these pages when
you finish your exam.

Remember that:
e Most instructions can have at most one memory operand.

e Brackets [| around a register name, immediate, or combination of the two indicates an
effective address.

o Example: MOV AX, [0x10] = contents of address 0x10 moved to AX

e Parentheses around an address mean “the contents of memory at this address”.

o Example: (0x10) = the contents of memory at address 0x10

Category | Instruction Example Meaning
Move MOV AX, BX AX = BX
Move & sign-extend MOVSX EAX, DL EAX = DL, sign-extended
to 32 bits
Data Move and zero-extend | MOVZX EAX, DL EAX = DL, zero-extended
transfer to 32 bits
Exchange XCHG AX, BX Swap contents of AX, BX
Load effective LEA AX, [BX+SI+0x10] |AX = BX + SI + 0x10
address
Add ADD AX, BX AX = AX + BX
Add with carry ADC AX, BX AX = AX + BX + CF
Increment INC [EDI] (EDI) = (EDI) + 1
Subtract SUB AX, [0x10] AX = AX - (0x10)
Subtract with borrow SBB AX, [0x10] AX = AX - (0x10) - CF
Decrement DEC CX CX = CX - 1
Negate (2’s NEG CX CX = -CX
complement)
Multiply IMUL BH AX = BH * AL
Unsigned: MUL
(all operands are non- | IMUL CX (DX,AX) = CX * AX
Arithmetic g?gf;g;e%MUL MUL DWORD PTR (EDX,EAX) = (0x10) * EAX
(all operands are [0x10]
signed integers in 2’s
complement form)
Divide DIV BH AL = AX / BH (quotient)
Unsigned: DIV AH = AX % BH (remainder)
(all operands are non-
negative) IDIV CX AX = EAX / CX (quotient)
Signed: IDIV DX = EAX % CX (remainder)
(all operands are
signed integers in 2’s | DTV EBX EAX = (EDX,EAX) / EBX (Q)
EDX = (EDX,EAX) % EBX (R)

complement form)

Category | Instruction Example Meaning
Logical AND AND AX, BX AX = AX & BX
Logical Logical inclusive OR OR AX, BX AX = AX | BX
Logical exclusive OR | XOR AX, BX AX = AX " BX
Logical NOT (bit flip) NOT AX AX = ~AX
Shift left SHL AX, 7 AX = AX << 7
SAL AX, CX AX = AX << CX
Logical shift right SHR AX, 7 AX = AX >> 7
(treat value as (upper 7 bits = 0)
unsigned, shift in 0s)
Arithmetic shift right SAR AX, 7 AX = AX >> 7
Shift/rotate | (treat value as signed; (upper 7 bits = MSB of
(NOTE: for | maintain sign) original value)
all Rotate left ROL AX, 7 AX = AX rotated left by 7
instructions (lower 7 bits of AX =
except upper 7 bits of original
RCL/RCR, value)
CF = last Rotate right ROR AX, 7 AX=AX rotated right by 7
bit shifted (upper 7 bits of AX =
out) lower 7 bits of original
value)
Rotate left through RCL AX, 7 (CF,AX) rotated left by 7
carry (Treat CF & AX as 17-bit
value with CF as MSB)
Rotate right through RCR AX, 7 (AX,CX) rotated right 7
carry (Treat CF & AX as 17-b8t
value with CF as LSB)
Bit test BT AX, 7 CF = Value of bit 7 of AX
Bit test and reset BTR AX, 7 CF = Value of bit 7 of AX
Bit 7 of AX = 0
Bit test and set BTS AX, 7 CF = Value of bit 7 of AX
Bit 7 of AX =1
Bit test and BTC AX, 7 CF = Value of bit 7 of AX
complement Bit 7 of AX is flipped
Bit test/ Bit scan forward BSF DX, AX DX = index of first non-
scan zero bit of AX, starting

with bit O
ZF = 0 1f AX = 0, 1
otherwise

Bit scan reverse

BSR DX, AX

DX = index of first non-
zero bit of AX, starting
with MSB

ZF = 0 1if AX = 0, 1
otherwise

Category | Instruction Example Meaning
Compare CMP AX, BX Subtract AX - BX
Conditional Updates flags
tests Byte set on condition | SETcc AH AH = 1 if condition true
AH = 0 if condition false

Unconditional jump JMP label Jump to label

Conditional jump Jcc label Jump to label if
condition true

Loop LOOP label Decrement CX; jump to

J d label if CX != 0
I;g;ssan Loop if equal/zero LOOPE label Decremgnt CX; Jjump to
LOOPZ label label if (CX != 0) &&
(ZF == 1)
Loop if not equal/zero | LOOPNE label Decrement CX; jump to
LOOPNZ label label if (CX != 0) &&
(ZF == 0)

Call subroutine CALL label Jump to label; save
address of instruction
after CALL

Return from RET label Return from subroutine

subroutine (Jump to saved address
from CALL)

Push PUSH AX SP = SP - 2
(SP) = AX

. PUSH EAX SP = SP - 4
Subroutine- (SP) = EAX
related Pop POP AX AX = (SP)
instructions Sp = Sp + 2

POP EAX EAX = (SP)
SP = SP + 4

Push flags PUSHF Store flags on stack

Pop flags POPF Remove flags from stack

Push all registers PUSHA Store all general purpose
registers on stack

Pop all registers POPA Remove general purpose

registers from stack

Condition

code Meaning Flags
@) Overflow OF =1
NO No overflow OF =0
B Below
NAE Not above or equal CF=1
C Carry
NB Not below
AE Above or equal CF=0
NC No carry
S Sign set SF =1
NS Sign not set SF=0
P Parity _
PE Parity even PP =1
NP No parity _
PO Parity odd PF=0
E Equal _
z Zero ZF =1
NE Not equal _
NZ Not zero ZF=0
BE Below or equal _
NA Not above CFORZF =1
NBE Not below or equal _
A Above CFORZF=0
L Less than _
NGE Not greater than or equal SF XOR OF =1
NL Not less than _
GE Greater than or equal SF XOR OF =0
LE Less than or equal _
NG Not greater than (SF XOR OF) OR ZF =1
NLE Not less than or equal _
G Greater than (SF XOROF)OR ZF =0

x86 subroutine details:

e Subroutine arguments are passed on the stack, and can be accessed within the body of the
subroutine starting at address EBP+8.

e At the start of each subroutine:
o Save EBP on the stack
o Copy the current value of the stack pointer (ESP) to EBP

o Create space within the stack for each local variable by subtracting the
appropriate value from ESP. For example, if your function uses four integer local
variables, each of which contains four bytes, subtract 16 from ESP. Local
variables can then be accessed starting at the address EBP-4.

o Save any registers the function uses other than EAX, ECX, and EDX.

e A subroutine’s return value is typically stored in EAX.

Typical x86 stack frame (covered in HLL = assembly lectures)

Lower | :
addresses
saved register k | €¢—————————
: saved :
| registers |
saved register 1
local variable m | EBP-4m
I local |
: variables :
local variable 2 | EBP-8
local variable 1 EBP-4
saved EBP D ——
saved EIP
(return address)
fn argument 1 EBP+8
fn argument 2 EBP+12
| function |
I arguments I
fn argument n EBP+4n+4
Higher i
addresses | 1

