The following pages contain references for use during the exam: tables containing the x86 instruction set (covered so far) and condition codes. You do not need to submit these pages when you finish your exam.

Remember that:

- Most instructions can have at most one memory operand.
- Brackets [] around a register name, immediate, or combination of the two indicates an effective address.
o Example: MOV AX, $[0 \times 10] \ddagger$ contents of address 0×10 moved to AX
- Parentheses around an address mean "the contents of memory at this address".

0 Example: $(0 x 10) \ddagger$ the contents of memory at address $0 x 10$

Category	Instruction	Example	Meaning
Data transfer	Move	MOV AX, BX	AX = BX
	Move \& sign-extend	MOVSX EAX, DL	```EAX = DL, sign-extended to 32 bits```
	Move and zero-extend	MOVZX EAX, DL	$\begin{aligned} & \text { EAX }=\text { DL, zero-extended } \\ & \text { to } 32 \text { bits } \end{aligned}$
	Exchange	XCHG AX, BX	Swap contents of AX, BX
	Load effective address	LEA AX, [BX+SI+0x10]	AX = BX + SI + 0x10
Arithmetic	Add	ADD AX, BX	$A X=A X+B X$
	Add with carry	ADC AX, BX	AX $=\mathrm{AX}+\mathrm{BX}+\mathrm{CF}$
	Increment	INC [EDI]	$(E D I)=(E D I)+1$
	Subtract	SUB AX, [0x10]	AX = AX - (0x10)
	Subtract with borrow	SBB AX, [0x10]	$A X=A X-(0 \times 10)-C F$
	Decrement	DEC CX	CX $=$ CX - 1
	Negate (2's complement)	NEG CX	CX $=-C X$
	Multiply Unsigned: MUL (all operands are nonnegative) Signed: IMUL (all operands are signed integers in 2's complement form)	IMUL BH IMUL CX MUL DWORD PTR [0x10]	$\begin{aligned} & A X=B H * A L \\ & (D X, A X)=C X * A X \\ & (E D X, E A X)=(0 \times 10) * E A X \end{aligned}$
	Divide Unsigned: DIV (all operands are nonnegative) Signed: IDIV (all operands are signed integers in 2's complement form)	DIV BH IDIV CX DIV EBX	$\mathrm{AL}=\mathrm{AX} / \mathrm{BH}$ (quotient) $\mathrm{AH}=\mathrm{AX} \% \mathrm{BH}$ (remainder) $\mathrm{AX}=\mathrm{EAX} / \mathrm{CX}$ (quotient) $\mathrm{DX}=\mathrm{EAX} \% \mathrm{CX}$ (remainder) $\mathrm{EAX}=(E D X, E A X) / \mathrm{EBX}(\mathrm{Q})$ $E D X=(E D X, E A X) \% E B X(R)$

