
 1

16.216: ECE Application Programming
Fall 2015

Programming Assignment #9: Instruction Decoding and File I/O
Due Wednesday, 12/2/15, 11:59:59 PM

1. Introduction
In this assignment, you will work with files to handle input and output. Your program will
simulate a very simple processor that is controlled using a 32-bit “instruction.” The
program will decode this instruction to determine what operation should be performed
and what values should be used in the computation. Initial register values and
instructions will be read from input files, and it prints its results to an output file.

2. Deliverables
This assignment uses multiple files; starter versions of each file are on the web page:

• prog9_decode.c: Source file containing your main function.
• prog9_functions.h: Header file containing function prototypes..
• prog9_functions.c: Source file containing other user-defined functions

Submit all three files by uploading these files to your Dropbox folder. Place the files in
directly in your shared folder—do not create a sub-folder to hold them. Ensure
your file names match the names specified above. Failure to meet this specification will
reduce your grade, as described in the program grading guidelines.

3. Specifications
NOTE: See Section 5 for a full breakdown of instruction encoding, possible
opcodes, and detailed information about the program inputs.

Variables: Your program should contain, at a minimum, the following variables:

• unsigned int inst: The current instruction

• int regs[32]: Array of register values. If you have an operation that uses R0,
R5, and R22, you’ll access regs[0], regs[5], and regs[22].

• unsigned int opcode: Instruction field indicating operation to be performed.

• unsigned int dest: Instruction field that holds destination register number.

• unsigned int src1: Instruction field with number of first source operand.

• unsigned int src2: Instruction field with number of second source operand.

• unsigned int shamt: Instruction field that holds shift amount; only used for
left and right shift operations.

You will also need variables to handle two different input files—one binary file, one text
file—and one output file. You may need other variables to complete the program.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 9

 2

Program outline: The program should perform the following operations:
• Prompt the user to enter the name of a binary input file. This file will contain 32

integer values—open the file and read these values into the regs[] array to
provide the initial register values.

o Sample binary files: invals1.bin, invals2.bin, and invals3.bin.
o Note that these files, as well as the text input file(s), should be placed in

the same directory as your source code or executable.
• Prompt the user to enter the names of two text files: one to be used for program

input; the other to be used for program output. Open each of these files.
o The input file will contain a series of “instructions”—32 bit unsigned

integers in hexadecimal format.
o Sample program files: p1.txt, p2.txt, and p3.txt.

• Set up a loop that will repeatedly read a single instruction from the program input
file, stopping when it reaches the end of the file.

• For each instruction:
o Decode the instruction into the appropriate fields. Note: the code to

perform the decoding is not provided in the starter file—an earlier version
of the specification incorrectly specified that it was present.

o Perform the appropriate operation on the source values. See Section 5 for
a list of operations and corresponding opcodes.

o Print the following output to the open text output file:
§ Line 1: The instruction, printed in the form:

INSTRUCTION <#>: <inst>

The number printed indicates how many instructions have been
read thus far.

§ Line 2: The registers and operation, in the form:
<dest> = <src1> <op> <src2>

§ Line 3: The values used in calculation and the result, in the form:
 = <val1> <op> <val2> = <result>

 For example, the first instruction may generate the following output:
INSTRUCTION 0: 0x04011000
R0 = R1 + R2
 = 1 + 2 = 3

o Store the instruction result in the appropriate regs[] array element.
§ Note: I suggest storing the result after printing the output, to ensure

the output is correct. For example, if you have the instruction:
R17 = R17 + R17

You can only print the correct source values on the next line if you
don’t overwrite regs[17] until after you’ve printed the output.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 9

 3

Error checking: If your program cannot open any of the three files (binary input file,
text input file, text output file), print an error message and repeat the prompt until a
correct file name is entered.

You may assume all input files are formatted correctly and therefore will not generate
any errors.

Hints: Most hints for this program can be found in the following sources:

• The starter files, which contain an outline of the program.

• The lecture slides, code, and recording from Friday, 11/6, which dealt with file
I/O.

• The lecture slides and recordings from Friday, 11/13, through Wednesday, 11/18,
which dealt with bitwise operators. Pay particular attention to the topics at the
end of the 11/16 lecture, which discuss how to isolate groups of bits from a larger
value—those techniques will be particularly helpful for instruction decoding.

• The code presented on the course website, which shows an old assignment that
provides further applications of bitwise operators.

4. Test Cases
The screenshots below show the console input and output from two different program
runs—one in which all files open successfully, and another in which the user provides
an invalid input file name:

The more useful test cases can be found on the web page, in the form of input and
output files. Follow the “Program 9 files” link to find sample input and output files, the
starter code file, and the example bitwise operator program mentioned above.

Your output files should match these test cases exactly for the given input values. I will
use these test cases in grading of your lab, but may also generate additional cases that
will not be publicly available. Note that these test cases may not cover all possible
program outcomes. You should create your own tests to help debug your code and
ensure proper operation for all possible inputs.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 9

 4

5. Additional Instruction Decoding Details
General description: When C programs are compiled, they are converted to
instructions—simple operations that processors execute. Most instructions specify an
operation to be performed and the data to be used in that operation.
Processors often store data in registers—temporary storage locations that are
referenced by name or number in the instruction, as shown in the example below. This
instruction adds the contents of registers 0 and 1 (the source operands) and stores the
result in register 2 (the destination operand):
 ADD R2, R0, R1
In practice, each instruction is encoded as a bit sequence; the processor decodes those
bits to determine the operation and operands used for each instruction. Each possible
operation is assigned a number, or opcode—for example, 0 might represent addition.
Registers are usually referred to by number.
This program simulates a simple processor with nine operations, which are listed below.
The “instruction” that you will input uses a total of 32 bits, as shown below (fields are
described in Section 3):

31 26 25 21 20 16 15 11 10 6 5 0

opcode
(6 bits)

dest
(5 bits)

src1
(5 bits)

src2
(5 bits)

shamt
(5 bits)

UNUSED

The example instruction above would be encoded as 0x04400800 =
0000 0100 0100 0000 1000 0000 00002:

• The first six bits (000001) indicate the operation (add)

• The next five bits indicate the destination register number (000102 = 2 à R2)

• The next five bits indicate the first source register number (000002 = 0 à R0)

• The next five bits indicate the second source register number (000012 = 1 à R1)

• The next five bits, which can hold a shift amount to be used in left and right shift
operations, are unused.

• The last six bits are always unused and can be ignored.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 9

 5

Opcode values and operations to be performed. Note that most operations use two
source registers, but the left and right shift operations (opcodes 5 and 6) use the shift
amount field as the second operand:

Opcode Operation Example instruction
1 Add 0x04011000

R0 = R1 + R2
2 Subtract 0x08642800

R3 = R4 - R5
3 Multiply 0x0cc74000

R6 = R7 * R8
4 Divide 0x112a5800

R9 = R10 / R11
5 Left shift 0x158d0200

R12 = R13 << 8
6 Right shift 0x19cf00c0

R14 = R15 >> 3
7 Bitwise AND 0x1e119000

R16 = R17 & R18
8 Bitwise OR 0x2274a800

R19 = R20 | R21
9 Bitwise XOR 0x26d7c000

R22 = R23 ^ R24

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 9

 6

Contents of binary input files: Values listed should be loaded directly into regs[] array;
if read correctly, each element of regs[] will start with the value shown:

 invals1.bin invals2.bin invals3.bin
regs[0] 0 -65536 5
regs[1] 1 -32768 1785
regs[2] 2 -16384 -333
regs[3] 3 -8192 117
regs[4] 4 -4096 -906
regs[5] 5 -2048 10000
regs[6] 6 -1024 -1978
regs[7] 7 -512 26
regs[8] 8 -256 12
regs[9] 9 -128 -24
regs[10] 10 -64 2007
regs[11] 11 -32 2111
regs[12] 12 -16 -2112
regs[13] 13 -8 718
regs[14] 14 -4 -3
regs[15] 15 -2 -88
regs[16] 16 -1 15
regs[17] 17 0 3
regs[18] 18 1 -916
regs[19] 19 2 -12345
regs[20] 20 4 1000000
regs[21] 21 8 2552
regs[22] 22 16 13
regs[23] 23 32 14
regs[24] 24 64 86
regs[25] 25 128 17
regs[26] 26 256 119
regs[27] 27 512 -890
regs[28] 28 1024 -5152
regs[29] 29 2048 33
regs[30] 30 4096 16
regs[31] 31 8192 8

