

 1

EECE.2160: ECE Application Programming
Summer 2017

Programming Assignment #3: A Simple Calculator
Due Friday, 5/26/17, 11:59:59 PM

1. Introduction
In this assignment, you will work with C conditional statements to implement a simple
calculator program. You will also work with basic output formatting when printing your
results.

2. Deliverables
Submit your source file by uploading it directly to your Dropbox folder. Ensure your
source file name is prog3_calc.c. You should submit only the .c file. Failure to meet this
specification will reduce your grade, as described in the program grading guidelines.

3. Specifications
Input: Your program should prompt the user to enter the following:

• The desired precision for the result and operands

• A simple arithmetic expression of the form a op b, where a and b are operands
and op is one of the following operators: +, -, *, /. Examples include:

o 5 + 3
o -0.777 * 17.175
o 22 / 11
o -1.2 - -3.4

Output: Given a valid expression, your program should calculate the result and reprint
the entire expression as well as its result, using the desired precision. If the precision is
2, the expressions listed above will produce the following output:

• 5.00 + 3.00 = 8.00
• -0.78 * 17.18 = -13.34 (original spec listed -13.40 as

result, which is incorrect)
• 22.00 / 11.00 = 2.00
• -1.20 - -3.40 = 2.20

See Section 4: Test Cases for more sample program runs.

EECE.2160: ECE Application Programming M. Geiger
UMass Lowell Program 3

 2

Error checking: Your program should print an error under any of the following
conditions:

• Any of the inputs are incorrectly formatted and therefore cannot be read correctly
using scanf().

o scanf() returns the number of values correctly read; you can store this
number in a variable and check its value. Say you have the following line
of code:

nVals = scanf("%d %d %d");

If the user enters:
§ 1 2 3 à nVals == 3

§ 1 2 a à nVals == 2 ('a' is not part of a valid int)
§ 1.2 2 3 à nVals == 1 ('.' is not part of a valid int, but 1

is read correctly)
§ X1 2 3 à nVals == 0 ('X' is not part of a valid int)

• The precision is not a valid value (must be ≥ 0).

• The user tries to divide by 0.

• The operator entered is not a valid operator.

4. Hints and Tips
Variable precision: As discussed in class, precision controls the number of digits
shown after the decimal point when printing float or double values. While we looked
at examples using a constant value to specify precision, an integer variable can be used
as well. To do so, an asterisk * should be used in place of the precision, as shown in
the example below: p is the precision and the variable v is being printed:
 printf("%.*lf", p, v);

Note that if multiple values are printed, you must specify the precision for each one. The
example below shows how to print three different variables—v1, v2, and v3—using the
variable prec to control the precision of each:
 printf("%.*lf %.*lf %.*lf", prec, v1,

prec, v2, prec, v3);

EECE.2160: ECE Application Programming M. Geiger
UMass Lowell Program 3

 3

5. Test Cases
Your output should match these test cases exactly for the given input values. I will use
these test cases in grading of your lab, but will also generate additional cases that will
not be publicly available. Note that these test cases do not cover all possible program
outcomes. You should create your own tests to help debug your code and ensure
proper operation for all possible inputs.

Remember, if you are using Visual Studio, to get your program to terminate with a
message saying, “Press any key to continue …”, use the Start Without Debugging
command (press Ctrl + F5) to run your code.
If you need to insert extra code at the end of your program to get that program to pause
when executing (for example, an infinite loop or the system("pause") function), please
remember to comment out that code prior to submitting your program.

