
 1

16.216: ECE Application Programming
Fall 2015

Programming Assignment #10: Doubly-Linked Lists
Due Wednesday, 12/9/15, 11:59:59 PM

1. Introduction
This assignment deals with the combination of dynamic memory allocation and
structures to create a common data structure known as a doubly-linked list, which is
shown in Figure 1.

Figure 1: Doubly-linked list in which each node contains three fields--pointers to the previous and next
nodes in the list, and a single integer as data. (source: http://en.wikipedia.org/wiki/Doubly-linked_list)

The boxes holding 'X' at the start and end of the list show the first and last nodes have
NULL pointers for their previous and next pointers, respectively. Pointers to the first and
last nodes, which allow you to traverse the list in either direction, are not shown.
The list you will implement is a sorted doubly-linked list in which the data stored in each
node is a string, and the nodes are sorted in alphabetical order. You will complete four
functions, which allow you to add or delete a node, find a node containing a given string,
or print the entire contents of the list.

2. Deliverables
This assignment uses multiple files, each of which is provided on the course web page:

• prog10_main.c: Main program. Do not change the contents of this file.
• DLList.h: Header file that contains structure definitions and function prototypes

to be used in this assignment. Do not change the contents of this file.
• DLList.c: Definitions for the functions described in DLList.h. You should only

complete the functions in this file—do not change any of the #include
statements, structure definitions, or function prototypes (i.e., function
return types and arguments).

To complete this assignment, you will complete each of the functions in DLList.c. If each
function is properly written, the entire program will work correctly.

Submit all three files by uploading these files to your Dropbox folder. Place the files in
directly in your shared folder—do not create a sub-folder to hold them. Ensure
your file names match the names specified above. Failure to meet this specification will
reduce your grade, as described in the program grading guidelines.
Also, note that if you complete this assignment, the lowest of your 10 program
scores will be dropped.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 10

 2

3. Specifications
The main program (prog10main.c) recognizes five different commands, most of which
call a function described in DLList.h and defined in DLList.c:

• add: Prompts the user to enter a word, then adds that word to the list using the
addNode() function.

• delete: Prompts the user to enter a word, then removes that word from the list
using the deleteNode() function.

• find: Prompts the user to enter a word, then searches the list for that word using
the findNode() function.

• print: Prints the entire contents of the list using the printList() function.

DLList.h contains function prototypes as well as structure definitions. The doubly-linked
list is defined using two structures:
• DLNode: A single node in the list, which contains three items:

o prev: A pointer to the previous node in the list. This pointer is NULL if the node
is the first entry in the list.

o next: A pointer to the next node in the list. This pointer is NULL if the node is
the last entry in the list.

o word: A string holding a single word, which is the data stored in this node.
§ The list should be sorted so that the words are stored in alphabetical order.
§ You can assume all words are written solely in lowercase letters.

• DLList: A structure that contains two pointers, firstNode and lastNode, which
point to the first and last nodes in the list, respectively.
o If the list is empty, both pointers are NULL.
o If the list holds only one node, both firstNode and lastNode point to that node.

You are responsible for completing each of the functions in DLList.c described below—
again, note that this file is the only one you should modify:

DLNode *findNode(DLList *list, char *str)

Search list for a node containing a word matching str. Return a pointer to this node
if it is found, and return NULL otherwise.

void printList(DLList *list)

Go through the entire list and print the word stored in each node on its own line. If the
list is empty, print “List is empty.”

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 10

 3

3. Specifications (continued)
The other two functions to be completed are:
void addNode(DLList *list, char *str)

Create a new node containing the word str, then add that node to the list. A few notes:
• The process for inserting a node in a doubly-

linked list is below, with pointer changes shown
in the figure (source: http://www.cs.grinnell.edu/
~walker/courses/161.sp12/modules/lists/
reading-lists-double.shtml):
o Create a new node
o Place the data in the node--remember, your

data is a dynamically allocated string.
o Set the prev and next pointers inside the

new node to point to the correct nodes.
o Modify next in the node before the new one.
o Modify prev in the node after the new one.

• This function must maintain the list order—the
new word must be stored in alphabetical order.
You must therefore find the correct location
before inserting the node into the list.

• There are three special cases to account for:
o The new node is the only thing in the list (i.e., list is empty at start of function)
o The new node becomes the first node in the list (but list contains other nodes)
o The new node becomes the last node in the list (but list contains other nodes)

void delNode(DLList *list, char *str)

Find the node containing the word str, then remove that node from the list. If no
matching node is found, do not modify the list. A few notes:

• This function essentially does the opposite of the addNode() function, once the
node to be removed has been found:
o Modify next in the node before the chosen node.
o Modify prev in the node after the chosen node.
o Remove the chosen node.

§ Removal of a node implies that any space that was dynamically allocated
when creating the node must be deallocated to remove it.

• There are, once again, three special cases to account for:
o The node to be removed is the only thing in the list (both first and last)
o The node to be removed is the first node in the list (but not also the last node)
o The node to be removed is the last node in the list (but not also the first node)

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 10

 4

4. Hints
Design process: I would suggest handling the program in the following order:

1. Start with printList(), and at least test the case where the list is empty.

2. Next, write the addNode() function. At least two of the first three cases you test
will have to be special cases, since the list starts out as an empty list, and the
second word you add will become either the first or last item in the list.

• You can test the operation of this function, as well as printList(), by
running the main program and alternating “add” and “print” commands.

3. Once you have handled all possible cases for addNode(), write the findNode()
function.

• Test this function by adding items to the list and then using the “find” command.
4. Finally, write the delNode() function.

• Test this function by adding items to the list, using the “delete” command, and
then using the “print” command to show the results. Be sure to test all of the
special cases.

If you encounter errors, running your program in the debugger is the most effective way
to find them. Recall that the debugger offers the ability to “step into” a function (F11 in
Visual Studio) so that you can see each step within the function you have written, or
simply “step over” (F10) the function and treat a function call as a single statement.

Similarities: Please note that many of the functions are similar to those used for a
sorted singly-linked list, which will be discussed in lecture starting on 11/23. In
particular:

• The findNode() and printList() functions are virtually identical.

• The addNode() and delNode() functions are similar—the presence of an
additional pointer in each node makes the functions slightly more complicated,
but also makes it easier to identify the nodes before and after the one being
added or deleted.

Handling first and last nodes: The addNode() and delNode() functions must each
deal with three special cases involving the first and last nodes in the list. The issues that
you must account for in these cases are the following:

• The DLList structure contains pointers to the first (firstNode) and last
(lastNode) nodes in the list. Therefore, any operation that changes what node is
first or last must also change the appropriate pointer in the DLList structure, not
just the prev and next pointers in the DLNode structures within the list.

• In each node at one end of the list, at least one of the pointers in that node is a
NULL pointer. In the first node, prev is NULL; in the last node, next is NULL. You
must account for these NULL pointers when working with these nodes.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 10

 5

4. Hints (continued)
Alphabetical sorting: Having a sorted list makes searching the list more efficient,
because you can stop searching once you reach a point at which the value you’re
searching for would be out of order. For example, if you search a list of integers sorted
from lowest to highest, and you’re looking for the value 5, you can stop searching once
you find any value greater than 5.
To handle string ordering, remember that the string compare functions, strcmp() and
strncmp(), return a positive value if the first string is “greater than” the second and a
negative value if the first string is “less than” the second. In other words, if the two
strings are in alphabetical order, these functions return negative values. For example:

• If n = strcmp("add", "subtract") à n < 0
• If n = strcmp("add", "addition") à n < 0
• If n = strcmp("add", "aardvark") à n > 0

5. Test Cases
Your output should match these test cases exactly for the given input values. I will use
these test cases in grading of your lab, but will also generate additional cases that will
not be publicly available. Note that these test cases may not cover all possible program
outcomes. You should create your own tests to help debug your code and ensure
proper operation for all possible inputs.

